The challenges of entering the metaverse: An experiment on the effect of extended reality on workload

Inf Syst Front. 2023;25(2):659-680. doi: 10.1007/s10796-022-10244-x. Epub 2022 Feb 12.

Abstract

Information technologies exist to enable us to either do things we have not done before or do familiar things more efficiently. Metaverse (i.e. extended reality: XR) enables novel forms of engrossing telepresence, but it also may make mundate tasks more effortless. Such technologies increasingly facilitate our work, education, healthcare, consumption and entertainment; however, at the same time, metaverse bring a host of challenges. Therefore, we pose the question whether XR technologies, specifically Augmented Reality (AR) and Virtual Reality (VR), either increase or decrease the difficulties of carrying out everyday tasks. In the current study we conducted a 2 (AR: with vs. without) × 2 (VR: with vs. without) between-subject experiment where participants faced a shopping-related task (including navigating, movement, hand-interaction, information processing, information searching, storing, decision making, and simple calculation) to examine a proposed series of hypotheses. The NASA Task Load Index (NASA-TLX) was used to measure subjective workload when using an XR-mediated information system including six sub-dimensions of frustration, performance, effort, physical, mental, and temporal demand. The findings indicate that AR was significantly associated with overall workload, especially mental demand and effort, while VR had no significant effect on any workload sub-dimensions. There was a significant interaction effect between AR and VR on physical demand, effort, and overall workload. The results imply that the resources and cost of operating XR-mediated realities are different and higher than physical reality.

Keywords: Augmented reality; Metaverse; Mixed reality; NASA Task Load Index; Virtual reality; Workload.