Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May;600(9):2165-2187.
doi: 10.1113/JP282303. Epub 2022 Mar 9.

Selective activation of BK channels in small-headed dendritic spines suppresses excitatory postsynaptic potentials

Affiliations
Free article

Selective activation of BK channels in small-headed dendritic spines suppresses excitatory postsynaptic potentials

Sabrina Tazerart et al. J Physiol. 2022 May.
Free article

Abstract

Dendritic spines are the main receptacles of excitatory information in the brain. Their particular morphology, with a small head connected to the dendrite by a slender neck, has inspired theoretical and experimental work to understand how these structural features affect the processing, storage and integration of synaptic inputs in pyramidal neurons (PNs). The activation of glutamate receptors in spines triggers a large voltage change as well as calcium signals at the spine head. Thus, voltage-gated and calcium-activated potassium channels located in the spine head likely play a key role in synaptic transmission. Here we study the presence and function of large conductance calcium-activated potassium (BK) channels in spines from layer 5 PNs. We found that BK channels are localized to dendrites and spines regardless of their size, but their activity can only be detected in spines with small head volumes (≤0.09 μm3 ), which reduces the amplitude of two-photon uncaging excitatory postsynaptic potentials recorded at the soma. In addition, we found that calcium signals in spines with small head volumes are significantly larger than those observed in spines with larger head volumes. In accordance with our experimental data, numerical simulations predict that synaptic inputs impinging onto spines with small head volumes generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with larger head volumes, which are sufficient to activate spine BK channels. These results show that BK channels are selectively activated in small-headed spines, suggesting a new level of dendritic spine-mediated regulation of synaptic processing, integration and plasticity in cortical PNs. KEY POINTS: BK channels are expressed in the visual cortex and layer 5 pyramidal neuron somata, dendrites and spines regardless of their size. BK channels are selectively activated in small-headed spines (≤0.09 μm3 ), which reduces the amplitude of two-photon (2P) uncaging excitatory postsynaptic potentials (EPSPs) recorded at the soma. Two-photon imaging revealed that intracellular calcium responses in the head of 2P-activated spines are significantly larger in small-headed spines (≤0.09 μm3 ) than in spines with larger head volumes. In accordance with our experimental data, numerical simulations showed that synaptic inputs impinging onto spines with small head volumes (≤0.09 μm3 ) generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with larger head volumes, sufficient to activate spine BK channels and suppress EPSPs.

Keywords: BK channels; dendritic spine; layer 5 pyramidal neuron; neocortex; neuronal modelling; potassium channels; pyramidal neuron; synaptic transmission; two-photon (2P) uncaging.

PubMed Disclaimer

Comment in

Similar articles

Cited by

References

    1. Allen D, Bond CT, Lujan R, Ballesteros-Merino C, Lin MT, Wang K, Klett N, Watanabe M, Shigemoto R, Stackman RW Jr, Maylie J & Adelman JP (2011). The SK2-long isoform directs synaptic localization and function of SK2-containing channels. Nat Neurosci 14, 744-749.
    1. Araya R (2014). Input transformation by dendritic spines of pyramidal neurons. Front Neuroanat 8, 141.
    1. Araya R, Andino-Pavlovsky V, Yuste R & Etchenique R (2013). Two-photon optical interrogation of individual dendritic spines with caged dopamine. ACS Chem Neurosci 4, 1163-1167.
    1. Araya R, Eisenthal KB & Yuste R (2006a). Dendritic spines linearize the summation of excitatory potentials. Proc Natl Acad Sci U S A 103, 18799-18804.
    1. Araya R, Jiang J, Eisenthal KB & Yuste R (2006b). The spine neck filters membrane potentials. Proc Natl Acad Sci U S A 103, 17961-17966.

Publication types

MeSH terms

Substances

Grants and funding

LinkOut - more resources