Selective activation of BK channels in small-headed dendritic spines suppresses excitatory postsynaptic potentials
- PMID: 35194785
- DOI: 10.1113/JP282303
Selective activation of BK channels in small-headed dendritic spines suppresses excitatory postsynaptic potentials
Abstract
Dendritic spines are the main receptacles of excitatory information in the brain. Their particular morphology, with a small head connected to the dendrite by a slender neck, has inspired theoretical and experimental work to understand how these structural features affect the processing, storage and integration of synaptic inputs in pyramidal neurons (PNs). The activation of glutamate receptors in spines triggers a large voltage change as well as calcium signals at the spine head. Thus, voltage-gated and calcium-activated potassium channels located in the spine head likely play a key role in synaptic transmission. Here we study the presence and function of large conductance calcium-activated potassium (BK) channels in spines from layer 5 PNs. We found that BK channels are localized to dendrites and spines regardless of their size, but their activity can only be detected in spines with small head volumes (≤0.09 μm3 ), which reduces the amplitude of two-photon uncaging excitatory postsynaptic potentials recorded at the soma. In addition, we found that calcium signals in spines with small head volumes are significantly larger than those observed in spines with larger head volumes. In accordance with our experimental data, numerical simulations predict that synaptic inputs impinging onto spines with small head volumes generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with larger head volumes, which are sufficient to activate spine BK channels. These results show that BK channels are selectively activated in small-headed spines, suggesting a new level of dendritic spine-mediated regulation of synaptic processing, integration and plasticity in cortical PNs. KEY POINTS: BK channels are expressed in the visual cortex and layer 5 pyramidal neuron somata, dendrites and spines regardless of their size. BK channels are selectively activated in small-headed spines (≤0.09 μm3 ), which reduces the amplitude of two-photon (2P) uncaging excitatory postsynaptic potentials (EPSPs) recorded at the soma. Two-photon imaging revealed that intracellular calcium responses in the head of 2P-activated spines are significantly larger in small-headed spines (≤0.09 μm3 ) than in spines with larger head volumes. In accordance with our experimental data, numerical simulations showed that synaptic inputs impinging onto spines with small head volumes (≤0.09 μm3 ) generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with larger head volumes, sufficient to activate spine BK channels and suppress EPSPs.
Keywords: BK channels; dendritic spine; layer 5 pyramidal neuron; neocortex; neuronal modelling; potassium channels; pyramidal neuron; synaptic transmission; two-photon (2P) uncaging.
© 2022 The Authors. The Journal of Physiology © 2022 The Physiological Society.
Comment in
-
BK channels at dendritic spines: A mechanism for coupling morphology, plasticity and information storage?J Physiol. 2022 Aug;600(15):3399-3401. doi: 10.1113/JP283232. Epub 2022 Jul 10. J Physiol. 2022. PMID: 35748599 No abstract available.
Similar articles
-
Impact of subthreshold membrane potential on synaptic responses at dendritic spines of layer 5 pyramidal neurons in the prefrontal cortex.J Neurophysiol. 2014 May;111(10):1960-72. doi: 10.1152/jn.00590.2013. Epub 2014 Jan 29. J Neurophysiol. 2014. PMID: 24478153 Free PMC article.
-
Cholinergic modulation of large-conductance calcium-activated potassium channels regulates synaptic strength and spine calcium in cartwheel cells of the dorsal cochlear nucleus.J Neurosci. 2014 Apr 9;34(15):5261-72. doi: 10.1523/JNEUROSCI.3728-13.2014. J Neurosci. 2014. PMID: 24719104 Free PMC article.
-
EPSPs Measured in Proximal Dendritic Spines of Cortical Pyramidal Neurons.eNeuro. 2016 May 12;3(2):ENEURO.0050-15.2016. doi: 10.1523/ENEURO.0050-15.2016. eCollection 2016 Mar-Apr. eNeuro. 2016. PMID: 27257618 Free PMC article.
-
Input transformation by dendritic spines of pyramidal neurons.Front Neuroanat. 2014 Dec 2;8:141. doi: 10.3389/fnana.2014.00141. eCollection 2014. Front Neuroanat. 2014. PMID: 25520626 Free PMC article. Review.
-
Electrical compartmentalization in dendritic spines.Annu Rev Neurosci. 2013 Jul 8;36:429-49. doi: 10.1146/annurev-neuro-062111-150455. Epub 2013 May 29. Annu Rev Neurosci. 2013. PMID: 23724997 Review.
Cited by
-
Electrophysiology of Dendritic Spines: Information Processing, Dynamic Compartmentalization, and Synaptic Plasticity.Adv Neurobiol. 2023;34:103-141. doi: 10.1007/978-3-031-36159-3_3. Adv Neurobiol. 2023. PMID: 37962795
-
Kinetics and functional consequences of BK channels activation by N-type Ca2+ channels in the dendrite of mouse neocortical layer-5 pyramidal neurons.Front Cell Neurosci. 2024 Feb 14;18:1353895. doi: 10.3389/fncel.2024.1353895. eCollection 2024. Front Cell Neurosci. 2024. PMID: 38419657 Free PMC article.
-
BK channel properties correlate with neurobehavioral severity in three KCNMA1-linked channelopathy mouse models.Elife. 2022 Jul 12;11:e77953. doi: 10.7554/eLife.77953. Elife. 2022. PMID: 35819138 Free PMC article.
-
Nano-organization of synaptic calcium signaling.Biochem Soc Trans. 2024 Jun 26;52(3):1459-1471. doi: 10.1042/BST20231385. Biochem Soc Trans. 2024. PMID: 38752834 Free PMC article. Review.
-
D-serine reconstitutes synaptic and intrinsic inhibitory control of pyramidal neurons in a neurodevelopmental mouse model for schizophrenia.Nat Commun. 2023 Dec 12;14(1):8255. doi: 10.1038/s41467-023-43930-8. Nat Commun. 2023. PMID: 38086803 Free PMC article.
References
-
- Allen D, Bond CT, Lujan R, Ballesteros-Merino C, Lin MT, Wang K, Klett N, Watanabe M, Shigemoto R, Stackman RW Jr, Maylie J & Adelman JP (2011). The SK2-long isoform directs synaptic localization and function of SK2-containing channels. Nat Neurosci 14, 744-749.
-
- Araya R (2014). Input transformation by dendritic spines of pyramidal neurons. Front Neuroanat 8, 141.
-
- Araya R, Andino-Pavlovsky V, Yuste R & Etchenique R (2013). Two-photon optical interrogation of individual dendritic spines with caged dopamine. ACS Chem Neurosci 4, 1163-1167.
-
- Araya R, Eisenthal KB & Yuste R (2006a). Dendritic spines linearize the summation of excitatory potentials. Proc Natl Acad Sci U S A 103, 18799-18804.
-
- Araya R, Jiang J, Eisenthal KB & Yuste R (2006b). The spine neck filters membrane potentials. Proc Natl Acad Sci U S A 103, 17961-17966.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources