Association of fluoroquinolone resistance and ESBL production in hypervirulent Klebsiella pneumoniae ST11 and ST893 in Iran

Acta Microbiol Immunol Hung. 2022 Feb 22. doi: 10.1556/030.2022.01638. Online ahead of print.

Abstract

The spread of multidrug resistance in Klebsiella pneumoniae is a serious threat to the public health. In this study, the prevalence of fluoroquinolone resistance and virulence determinants among ESBL-producing K. pneumoniae isolates was investigated. A total of 50 third-generation cephalosporin resistant K. pneumoniae strains were collected from patients' clinical cultures between September 1st, 2019 and February 30th, 2020. Clonal relatedness of clinical isolates was determined by multilocus sequence typing. All 50 isolates were multidrug-resistant (MDR) and carried at least one of the ESBL resistance determinants. The bla CTX-M-15 gene was the major ESBL determinant found in K. pneumoniae (88%), followed by bla SHV (86%) and bla TEM (78%). PMQR was detected in 96% of the isolates and aac(6')-Ib-cr was the most common (78%) as well as multiple mutations in gyrA (S83I, D87G) and parC (S80I) were found. Selected isolates were assigned to seven sequence types (STs) (ST11, ST893, ST147, ST16, ST377, ST13, and ST392). Overall, hypervirulent phenotypes were identified in 26 (52%) of the isolates. Among the 50 isolates, 28 (56%) were positive for ybt, 23 (46%) for rmpA, 17 (34%) for iroB, 15 (30%) for magA, 4 (8%) for alls and 3 (6%) for iucA genes. The K1 capsular type was the most prevalent (11/50; 22%) among isolates. The emergence of hypervirulent K. pneumoniae (hvKp) ST11 and ST893, which co-carried ESBL, PMQR determinants and different virulence genes has become a threat to the treatment of inpatients in the clinical setting.

Keywords: ESBL; PMQR; hypervirulent K. pneumoniae; virulence genes and MLST.