Compact Carbon-Based Membrane Reactors for the Intensified Anaerobic Decolorization of Dye Effluents

Membranes (Basel). 2022 Feb 1;12(2):174. doi: 10.3390/membranes12020174.


Carbon-based membranes integrated with anaerobic biodegradation are presented as a unique wastewater treatment approach to deal with dye effluents. This study explores the scope of ceramic-supported carbon membrane bioreactors (B-CSCM) and ceramic-supported graphene oxide membrane bioreactors (B-CSGOM) to decolorize azo dye mixtures (ADM) and other dyes. The mixture was prepared using an equimolar composition of monoazo Acid Orange 7, diazo Reactive Black 5, and triazo Direct Blue 71 dye aqueous solution. Afterwards, as in the ADM experiment, both compact units were investigated for their ability in the biodecolorization of Methylene Blue (MB) and Rhodamine B (RhB) dye solutions, which do not belong to the azo family. The obtained outcomes revealed that the conductive surface of the graphene oxide (GO) membrane resulted in a more efficient and higher color removal of all dye solutions than B-CSCM under a wide feed concentration and permeate flux ranges. The maximum color removal at low feed concentration (50 mg·L-1) and permeate flux (0.05 L·m-2·h-1) was 96% for ADM, 98% for MB and 94% for RhB, whereas it was 89%, 94% and 66%, respectively, for B-CSCM. This suggests that the robust, cost-effective, efficient nanostructures of B-CSGOM can successfully remove diverse azo dye solutions from wastewater better than the B-CSCM does.

Keywords: anaerobic decolorization; dye effluents; graphene oxide membrane; matrimid membrane.