Blue Light-Induced Retinal Neuronal Injury and Amelioration by Commercially Available Blue Light-Blocking Lenses

Life (Basel). 2022 Feb 7;12(2):243. doi: 10.3390/life12020243.

Abstract

Blue light exposure-induced retinal damage has been extensively studied. Although many in vitro studies have shown the benefits of blue light-blocking lenses (BBL) there have been few comprehensive in vivo studies to assess the effects of BBL. We investigated the influence of blue light exposure using light-emitting diodes on retinal histology and visual cortex neurons in rodents. We also considered whether retinal and cortical changes induced by blue light could be ameliorated with blue light-blocking lenses. A total of n = 24 (n = 6 in each group; control, light exposure without lenses, two different BBLs)) male Wistar rats were subjected to blue light exposure (LEDs, 450-500 lux) without or with BBLs (400-490 nm) for 28 days on a 12:12 h light-dark cycle. Histological analysis of retinae revealed apoptosis and necrosis of the retinal pigment epithelium (RPE), photoreceptors, and inner retina in the light exposure (LE) group, along with increase caspase-3 immunostaining in the ganglion cell layer (p < 0.001). BBL groups showed less caspase-3 immunostaining compared with the LE group (p < 0.001). V1-L5PNs (primary visual cortex layer 5 pyramidal neurons) demonstrated reduced branching and intersections points for apical (p < 0.001) and basal (p < 0.05) dendrites following blue light exposure. Blue light-blocking lenses significantly improved the number of basal branching points compared with the LE group. Our study shows that prolonged exposure to high levels of blue light pose a significant hazard to the visual system resulting in damage to the retina with the associated remodeling of visual cortex neurons. BBL may offer moderate protection against exposure to high levels of blue light.

Keywords: blue light-blocking lenses; caspase-3; light damage; retina; visual cortex neuron.