Development of Induction Heating System Ensuring Increased Heating Efficiency of the Charge Material in a Forging

Materials (Basel). 2022 Feb 17;15(4):1516. doi: 10.3390/ma15041516.

Abstract

This study performs a complex analysis and review of the currently applied methods of inductively heating the charge material in hot die forging processes, as well as elaborates and verifies a more effective heating method. On this basis, a device for inductive heating using variable frequency inductors was designed and constructed, which made it possible to reduce the scale and decarburization with respect to the heater used so far. In the first place, the temperature distributions in the heater in the function of time were modeled with the use of the CEDRAT FLUX software. The aim of the research was to analyze the temperature gradient and value diversification on the surface and in the material core, as well as to determine the process stability. The following stage was designing and constructing a heater with an automatic system of loading and positioning of the charge on the exit, as well as with a possibility of working in a fully automated system adjusted to the work center. The last stage of investigations was the verification of the elaborated effective heating method on the basis of a short production series and a continuous work for the period of 8 h, both in the quantitative and qualitative aspect (reduced oxidation and decarburization as well as a gradient between the core and the surface). The obtained results confirm the effectiveness of the proposed solution referring to heating the charge material, especially in the aspect of stability and repeatability of the process, as well as a significant reduction in oxidation and decarburization of the material surface.

Keywords: charge material; distribution of temperature; induction heating; simulation and modeling.