Learning to Learn Variational Quantum Algorithm

IEEE Trans Neural Netw Learn Syst. 2023 Nov;34(11):8430-8440. doi: 10.1109/TNNLS.2022.3151127. Epub 2023 Oct 27.

Abstract

Variational quantum algorithms (VQAs) use classical computers as the quantum outer loop optimizer and update the circuit parameters to obtain an approximate ground state. In this article, we present a meta-learning variational quantum algorithm (meta-VQA) by recurrent unit, which uses a technique called "meta-learner." Motivated by the hybrid quantum-classical algorithms, we train classical recurrent units to assist quantum computing, learning to find approximate optima in the parameter landscape. Here, aiming to reduce the sampling number more efficiently, we use the quantum stochastic gradient descent method and introduce the adaptive learning rate. Finally, we deploy on the TensorFlow Quantum processor within approximate quantum optimization for the Ising model and variational quantum eigensolver for molecular hydrogen (H2), lithium hydride (LiH), and helium hydride cation (HeH+). Our algorithm can be expanded to larger system sizes and problem instances, which have higher performance on near-term processors.