Leadless pacemaker technology: clinical evidence of new paradigm of pacing
- PMID: 35229534
- DOI: 10.31083/j.rcm2302043
Leadless pacemaker technology: clinical evidence of new paradigm of pacing
Abstract
Despite continuous technological developments, transvenous pacemakers (PM) are still associated with significant immediate and long-term complications, mostly lead or pocket-related. Recent technological advances brought to the introduction in clinical practice of leadless PM for selected cohort of patients. These miniaturize devices are implanted through the femoral vein and advanced to the right ventricle, without leaving leads in place. Lack of upper extremity vascular access and/or high infective risk in patients requiring VVI pacing are the most common indications to leadless PM. The recently introduced MICRA AV leadless PM also allows ventricular synchronization through mechanical sensing of atrial contraction waves, thus solving the problem of AV synchronization. This review will discuss and summarize available clinical evidence on leadless PM, their performance compared to transvenous devices, current applications and future perspectives.
Keywords: Leadless pacing; MICRA; Nanostim; Transvenous pacing.
© 2022 The Author(s). Published by IMR Press.
Conflict of interest statement
The authors declare no conflict of interest.
Similar articles
-
Leadless Pacemakers: State of the Art and Future Perspectives.Card Electrophysiol Clin. 2018 Mar;10(1):17-29. doi: 10.1016/j.ccep.2017.11.003. Card Electrophysiol Clin. 2018. PMID: 29428139 Review.
-
Outcomes of leadless pacemaker implantation after cardiac surgery and transcatheter structural valve interventions.J Cardiovasc Electrophysiol. 2023 Nov;34(11):2216-2222. doi: 10.1111/jce.16074. Epub 2023 Sep 20. J Cardiovasc Electrophysiol. 2023. PMID: 37727925
-
Different leadless pacemakers working in harmony (Aveir in the atrium/Micra AV2 in the ventricle) in a patient with dextrocardia and double outlet right ventricle after high-risk infected device extraction.J Cardiovasc Electrophysiol. 2024 Mar;35(3):418-421. doi: 10.1111/jce.16173. Epub 2024 Jan 11. J Cardiovasc Electrophysiol. 2024. PMID: 38213071
-
Leadless Cardiac Pacemakers: Current status of a modern approach in pacing.Hellenic J Cardiol. 2017 Nov-Dec;58(6):403-410. doi: 10.1016/j.hjc.2017.05.004. Epub 2017 May 18. Hellenic J Cardiol. 2017. PMID: 28529181 Review.
-
Accelerometer-based atrioventricular synchronous pacing with a ventricular leadless pacemaker: Results from the Micra atrioventricular feasibility studies.Heart Rhythm. 2018 Sep;15(9):1363-1371. doi: 10.1016/j.hrthm.2018.05.004. Epub 2018 May 11. Heart Rhythm. 2018. PMID: 29758405
Cited by
-
Economic Evaluation of Anesthesiology-Led Cardiac Implantable Electronic Device Service.Healthcare (Basel). 2023 Jun 27;11(13):1864. doi: 10.3390/healthcare11131864. Healthcare (Basel). 2023. PMID: 37444698 Free PMC article.
-
A simultaneous occurrence of pulmonary embolism and cerebral infarction following Micra™ leadless pacemaker implantation.J Geriatr Cardiol. 2023 Oct 28;20(10):756-759. doi: 10.26599/1671-5411.2023.10.006. J Geriatr Cardiol. 2023. PMID: 37970227 Free PMC article. No abstract available.
-
Conceptual Piezoelectric-Based Energy Harvester from In Vivo Heartbeats' Cyclic Kinetic Motion for Leadless Intracardiac Pacemakers.Micromachines (Basel). 2024 Sep 6;15(9):1133. doi: 10.3390/mi15091133. Micromachines (Basel). 2024. PMID: 39337793 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
