Coil-to-α-helix transition at the Nup358-BicD2 interface activates BicD2 for dynein recruitment
- PMID: 35229716
- PMCID: PMC8956292
- DOI: 10.7554/eLife.74714
Coil-to-α-helix transition at the Nup358-BicD2 interface activates BicD2 for dynein recruitment
Abstract
Nup358, a protein of the nuclear pore complex, facilitates a nuclear positioning pathway that is essential for many biological processes, including neuromuscular and brain development. Nup358 interacts with the dynein adaptor Bicaudal D2 (BicD2), which in turn recruits the dynein machinery to position the nucleus. However, the molecular mechanisms of the Nup358/BicD2 interaction and the activation of transport remain poorly understood. Here for the first time, we show that a minimal Nup358 domain activates dynein/dynactin/BicD2 for processive motility on microtubules. Using nuclear magnetic resonance titration and chemical exchange saturation transfer, mutagenesis, and circular dichroism spectroscopy, a Nup358 α-helix encompassing residues 2162-2184 was identified, which transitioned from a random coil to an α-helical conformation upon BicD2 binding and formed the core of the Nup358-BicD2 interface. Mutations in this region of Nup358 decreased the Nup358/BicD2 interaction, resulting in decreased dynein recruitment and impaired motility. BicD2 thus recognizes Nup358 through a 'cargo recognition α-helix,' a structural feature that may stabilize BicD2 in its activated state and promote processive dynein motility.
Keywords: BicD2; NMR; TIRF; bidirectional transport; dynein; molecular biophysics; none; nuclear positioning; structural biology.
© 2022, Gibson et al.
Conflict of interest statement
JG, HC, MA, XZ, ED, JZ, KT, SS, CW No competing interests declared
Figures
Similar articles
-
A Structural Model for the Core Nup358-BicD2 Interface.Biomolecules. 2023 Sep 26;13(10):1445. doi: 10.3390/biom13101445. Biomolecules. 2023. PMID: 37892127 Free PMC article.
-
Adapter Proteins for Opposing Motors Interact Simultaneously with Nuclear Pore Protein Nup358.Biochemistry. 2019 Dec 17;58(50):5085-5097. doi: 10.1021/acs.biochem.9b00907. Epub 2019 Dec 6. Biochemistry. 2019. PMID: 31756096 Free PMC article.
-
A Quantitative Model for BicD2/Cargo Interactions.Biochemistry. 2018 Nov 20;57(46):6538-6550. doi: 10.1021/acs.biochem.8b00987. Epub 2018 Nov 5. Biochemistry. 2018. PMID: 30345745 Free PMC article.
-
How dynein and dynactin transport cargos: a structural perspective.Curr Opin Struct Biol. 2016 Apr;37:62-70. doi: 10.1016/j.sbi.2015.12.003. Epub 2016 Jan 7. Curr Opin Struct Biol. 2016. PMID: 26773477 Review.
-
Dynein activators and adaptors at a glance.J Cell Sci. 2019 Mar 15;132(6):jcs227132. doi: 10.1242/jcs.227132. J Cell Sci. 2019. PMID: 30877148 Free PMC article. Review.
Cited by
-
Cargo adaptor identity controls the mechanism and kinetics of dynein activation.bioRxiv [Preprint]. 2024 Oct 12:2024.10.09.617440. doi: 10.1101/2024.10.09.617440. bioRxiv. 2024. PMID: 39416085 Free PMC article. Preprint.
-
Workshop on RanBP2/Nup358 and acute necrotizing encephalopathy.Nucleus. 2022 Dec;13(1):154-169. doi: 10.1080/19491034.2022.2069071. Nucleus. 2022. PMID: 35485383 Free PMC article.
-
TRAK adaptors regulate the recruitment and activation of dynein and kinesin in mitochondrial transport.Nat Commun. 2023 Mar 13;14(1):1376. doi: 10.1038/s41467-023-36945-8. Nat Commun. 2023. PMID: 36914620 Free PMC article.
-
BICD2 phosphorylation regulates dynein function and centrosome separation in G2 and M.Nat Commun. 2023 Apr 27;14(1):2434. doi: 10.1038/s41467-023-38116-1. Nat Commun. 2023. PMID: 37105961 Free PMC article.
-
Molecular mechanism for recognition of the cargo adapter Rab6GTP by the dynein adapter BicD2.Life Sci Alliance. 2024 May 7;7(7):e202302430. doi: 10.26508/lsa.202302430. Print 2024 Jul. Life Sci Alliance. 2024. PMID: 38719748 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
