Activation of lactate receptor HCAR1 down-modulates neuronal activity in rodent and human brain tissue

J Cereb Blood Flow Metab. 2022 Sep;42(9):1650-1665. doi: 10.1177/0271678X221080324. Epub 2022 Mar 3.

Abstract

Lactate can be used by neurons as an energy substrate to support their activity. Evidence suggests that lactate also acts on a metabotropic receptor called HCAR1, first described in the adipose tissue. Whether HCAR1 also modulates neuronal circuits remains unclear. In this study, using qRT-PCR, we show that HCAR1 is present in the human brain of epileptic patients who underwent resective surgery. In brain slices from these patients, pharmacological HCAR1 activation using a non-metabolized agonist decreased the frequency of both spontaneous neuronal Ca2+ spiking and excitatory post-synaptic currents (sEPSCs). In mouse brains, we found HCAR1 expression in different regions using a fluorescent reporter mouse line and in situ hybridization. In the dentate gyrus, HCAR1 is mainly present in mossy cells, key players in the hippocampal excitatory circuitry and known to be involved in temporal lobe epilepsy. By using whole-cell patch clamp recordings in mouse and rat slices, we found that HCAR1 activation causes a decrease in excitability, sEPSCs, and miniature EPSCs frequency of granule cells, the main output of mossy cells. Overall, we propose that lactate can be considered a neuromodulator decreasing synaptic activity in human and rodent brains, which makes HCAR1 an attractive target for the treatment of epilepsy.

Keywords: Dentate gyrus; HCA1 receptor; electrophysiology; epilepsy; human brain slices.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain
  • Dentate Gyrus* / physiology
  • Epilepsy*
  • Excitatory Postsynaptic Potentials / physiology
  • Humans
  • Lactic Acid
  • Mice
  • Neurons* / physiology
  • Rats
  • Receptors, G-Protein-Coupled* / metabolism

Substances

  • HCAR1 protein, human
  • Hcar1 protein, mouse
  • Receptors, G-Protein-Coupled
  • Lactic Acid