Applying computable phenotypes within a common data model to identify heart failure patients for an implantable cardiac device registry

Int J Cardiol Heart Vasc. 2022 Feb 19:39:100974. doi: 10.1016/j.ijcha.2022.100974. eCollection 2022 Apr.

Abstract

Background: Use of existing data in electronic health records (EHRs) could be used more extensively to better leverage real world data for clinical studies, but only if standard, reliable processes are developed. Numerous computable phenotypes have been validated against manual chart review, and common data models (CDMs) exist to aid implementation of such phenotypes across platforms and sites. Our objective was to measure consistency between data that had previously been manually collected for an implantable cardiac device registry and CDM-based phenotypes for the condition of heart failure (HF).

Methods: Patients enrolled in an implantable cardiac device registry at two hospitals from 2013 to 2018 contributed to this analysis wherein registry data were compared to PCORnet CDM-formatted EHR data. Seven different phenotype algorithms were used to search for the presence of HF and compare the results with the registry. Sensitivity, specificity, predictive value and congruence were calculated for each phenotype.

Results: In the registry, 176 of 319 (55%) patients had history of HF, compared with different phenotypes estimating between 96 (30%) and 188 (59%). The least-restrictive phenotypes (any diagnosis) had high sensitivity and specificity (90%/80%), but more restrictive phenotypes had higher specificity (e.g., code present in problem list, 94%). Differences were observed using time-based criteria (e.g., days between visit diagnoses) and between participating hospitals.

Conclusions: Consistency between manually-collected registry data and CDM-based phenotypes for history of HF was high overall, but use of different phenotypes impacted sensitivity and specificity, and results may differ depending on the medical condition of interest.

Keywords: Clinical trial; Common data model; Comorbidities heart failure; Computable phenotype; Electronic health record; Registry.