GENOMIC CHARACTERIZATION OF MULTIDRUG-RESISTANT EXTENDED-SPECTRUM β-LACTAMASE-PRODUCING ESCHERICHIA COLI AND KLEBSIELLA PNEUMONIAE FROM CHIMPANZEES (PAN TROGLODYTES) FROM WILD AND SANCTUARY LOCATIONS IN UGANDA

J Wildl Dis. 2022 Apr 1;58(2):269-278. doi: 10.7589/JWD-D-21-00068.

Abstract

Farm and wild animals may serve as reservoirs of antimicrobial-resistant bacteria of human health relevance. We investigated the occurrence and genomic characteristics of extended spectrum β-lactamase (ESBL)-producing bacteria in Ugandan chimpanzees (Pan troglodytes) residing in two environments with or without close contact to humans. The ESBL-producing Escherichia coli and Klebsiella pneumoniae were isolated from fecal material of chimpanzees from Budongo Forest and Ngamba Island Chimpanzee Sanctuary in Uganda and were more commonly isolated from chimpanzees in Ngamba Island Chimpanzee Sanctuary, where animals have close contact with humans. Selected ESBL isolates (E. coli n=9, K. pneumoniae n=7) were analyzed by whole-genome sequencing to determine the presence of resistance genes, as well as sequence type and virulence potential; the blaCTX-M-15 gene was present in all strains. Additionally, the ESBL genes blaSHV-11 and blaSHV-12 were found in strains in the study. All strains were found to be multidrug resistant. The E. coli strains belonged to four sequence types (ST2852, ST215, ST405, and ST315) and the K. pneumoniae strains to two sequence types (ST1540 and ST597). Virulence genes did not indicate that strains were of common E. coli pathotype, but strains with the same sequence types as isolated in the current study have previously been reported from clinical cases in Africa. The findings indicate that chimpanzees in close contact with humans may carry ESBL bacteria at higher frequency than those in the wild, indicating a potential anthropogenic transmission.

Keywords: Escherichia coli; Klebsiella pneumoniae; Antimicrobial resistance; ESBL; chimpanzees; whole-genome sequencing.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / therapeutic use
  • Escherichia coli
  • Escherichia coli Infections* / epidemiology
  • Escherichia coli Infections* / microbiology
  • Escherichia coli Infections* / veterinary
  • Genomics
  • Klebsiella Infections* / epidemiology
  • Klebsiella Infections* / veterinary
  • Klebsiella pneumoniae / genetics
  • Microbial Sensitivity Tests / veterinary
  • Pan troglodytes
  • Uganda / epidemiology
  • beta-Lactamases / genetics

Substances

  • Anti-Bacterial Agents
  • beta-Lactamases