Motor cortical output for skilled forelimb movement is selectively distributed across projection neuron classes
- PMID: 35263129
- PMCID: PMC8906739
- DOI: 10.1126/sciadv.abj5167
Motor cortical output for skilled forelimb movement is selectively distributed across projection neuron classes
Abstract
The interaction of descending neocortical outputs and subcortical premotor circuits is critical for shaping skilled movements. Two broad classes of motor cortical output projection neurons provide input to many subcortical motor areas: pyramidal tract (PT) neurons, which project throughout the neuraxis, and intratelencephalic (IT) neurons, which project within the cortex and subcortical striatum. It is unclear whether these classes are functionally in series or whether each class carries distinct components of descending motor control signals. Here, we combine large-scale neural recordings across all layers of motor cortex with cell type-specific perturbations to study cortically dependent mouse motor behaviors: kinematically variable manipulation of a joystick and a kinematically precise reach-to-grasp. We find that striatum-projecting IT neuron activity preferentially represents amplitude, whereas pons-projecting PT neurons preferentially represent the variable direction of forelimb movements. Thus, separable components of descending motor cortical commands are distributed across motor cortical projection cell classes.
Figures
Similar articles
-
Movement-specific signaling is differentially distributed across motor cortex layer 5 projection neuron classes.Cell Rep. 2022 May 10;39(6):110801. doi: 10.1016/j.celrep.2022.110801. Cell Rep. 2022. PMID: 35545038 Free PMC article.
-
Distinct Laterality in Forelimb-Movement Representations of Rat Primary and Secondary Motor Cortical Neurons with Intratelencephalic and Pyramidal Tract Projections.J Neurosci. 2017 Nov 8;37(45):10904-10916. doi: 10.1523/JNEUROSCI.1188-17.2017. Epub 2017 Oct 2. J Neurosci. 2017. PMID: 28972128 Free PMC article.
-
Layer 5 Intratelencephalic Neurons in the Motor Cortex Stably Encode Skilled Movement.J Neurosci. 2023 Oct 25;43(43):7130-7148. doi: 10.1523/JNEUROSCI.0428-23.2023. Epub 2023 Sep 12. J Neurosci. 2023. PMID: 37699714 Free PMC article.
-
Towards the classification of subpopulations of layer V pyramidal projection neurons.Neurosci Res. 2006 Jun;55(2):105-15. doi: 10.1016/j.neures.2006.02.008. Epub 2006 Mar 15. Neurosci Res. 2006. PMID: 16542744 Review.
-
Emerging ideas and tools to study the emergent properties of the cortical neural circuits for voluntary motor control in non-human primates.F1000Res. 2019 May 29;8:F1000 Faculty Rev-749. doi: 10.12688/f1000research.17161.1. eCollection 2019. F1000Res. 2019. PMID: 31275561 Free PMC article. Review.
Cited by
-
Hippocampal representations of foraging trajectories depend upon spatial context.Nat Neurosci. 2022 Dec;25(12):1693-1705. doi: 10.1038/s41593-022-01201-7. Epub 2022 Nov 29. Nat Neurosci. 2022. PMID: 36446934 Free PMC article.
-
Pyramidal cell types drive functionally distinct cortical activity patterns during decision-making.Nat Neurosci. 2023 Mar;26(3):495-505. doi: 10.1038/s41593-022-01245-9. Epub 2023 Jan 23. Nat Neurosci. 2023. PMID: 36690900 Free PMC article.
-
Motor cortical inactivation impairs corrective submovements in mice performing a hold-still center-out reach task.J Neurophysiol. 2024 Sep 1;132(3):829-848. doi: 10.1152/jn.00241.2023. Epub 2024 Jul 31. J Neurophysiol. 2024. PMID: 39081209
-
Adaptation of sequential action benefits from timing variability related to lateral basal ganglia circuitry.iScience. 2024 Feb 20;27(3):109274. doi: 10.1016/j.isci.2024.109274. eCollection 2024 Mar 15. iScience. 2024. PMID: 38496293 Free PMC article.
-
Striatal Dopamine Contributions to Skilled Motor Learning.J Neurosci. 2024 Jun 26;44(26):e0240242024. doi: 10.1523/JNEUROSCI.0240-24.2024. J Neurosci. 2024. PMID: 38806248 Free PMC article.
References
-
- R. Muñoz-Castaneda, B. Zingg, K. S. Matho, Q. Wang, X. Chen, N. N. Foster, A. Narasimhan, A. Li, K. E. Hirokawa, B. Huo, S. Bannerjee, L. Korobkova, C. S. Park, Y.-G. Park, M. S. Bienkowski, U. Chon, D. W. Wheeler, X. Li, Y. Wang, K. Kelly, X. An, S. M. Attili, I. Bowman, A. Bludova, A. Cetin, L. Ding, R. Drewes, F. D’Orazi, C. Elowsky, S. Fischer, W. Galbavy, L. Gao, J. Gillis, P. A. Groblewski, L. Gou, J. D. Hahn, J. T. Hatfield, H. Hintiryan, J. Huang, H. Kondo, X. Kuang, P. Lesnar, X. Li, Y. Li, M. Lin, L. Liu, D. Lo, J. Mizrachi, S. Mok, M. Naeemi, P. R. Nicovich, R. Palaniswamy, J. Palmer, X. Qi, E. Shen, Y.-C. Sun, H. Tao, W. Wakemen, Y. Wang, P. Xie, S. Yao, J. Yuan, M. Zhu, L. Ng, L. I. Zhang, B. K. Lim, M. Hawrylycz, H. Gong, J. C. Gee, Y. Kim, H. Peng, K. Chuang, X William Yang, Q. Luo, P. P. Mitra, A. M. Zador, H. Zeng, G. A. Ascoli, Z Josh Huang, P. Osten, J. A. Harris, H.-W. Dong, Cellular anatomy of the mouse primary motor cortex. bioRxiv 10.02.323154 [Preprint]. 2 October 2020. www.biorxiv.org/content/10.1101/2020.10.02.323154v1.abstract. - DOI
-
- Winnubst J., Bas E., Ferreira T. A., Wu Z., Economo M. N., Edson P., Arthur B. J., Bruns C., Rokicki K., Schauder D., Olbris D. J., Murphy S. D., Ackerman D. G., Arshadi C., Baldwin P., Blake R., Elsayed A., Hasan M., Ramirez D., Dos Santos B., Weldon M., Zafar A., Dudman J. T., Gerfen C. R., Hantman A. W., Korff W., Sternson S. M., Spruston N., Svoboda K., Chandrashekar J., Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain. Cell 179, 268–281.e13 (2019). - PMC - PubMed
-
- Lemon R. N., Descending pathways in motor control. Annu. Rev. Neurosci. 31, 195–218 (2008). - PubMed
-
- H. Kuypers, in Comprehensive Physiology, R. Terjung, Ed. (John Wiley & Sons Inc., 2011), vol. 243, p. 499.
LinkOut - more resources
Full Text Sources
