De novo Design of SARS-CoV-2 Main Protease Inhibitors
- PMID: 35282568
- PMCID: PMC8916680
- DOI: 10.1055/a-1582-0243
De novo Design of SARS-CoV-2 Main Protease Inhibitors
Abstract
The COVID-19 pandemic prompted many scientists to investigate remedies against SARS-CoV-2 and related viruses that are likely to appear in the future. As the main protease of the virus, MPro, is highly conserved among coronaviruses, it has emerged as a prime target for developing inhibitors. Using a combination of virtual screening and molecular modeling, we identified small molecules that were easily accessible and could be quickly diversified. Biochemical assays confirmed a class of pyridones as low micromolar non-covalent inhibitors of the viral main protease.
Keywords: Coronavirus; Molecular Modeling; SARS-CoV-2; Small-Molecule Inhibitor; Viral Main Protease.
Conflict of interest statement
Conflict of Interest The authors declare no conflict of interest.
Figures
Similar articles
-
Structural Basis of the Main Proteases of Coronavirus Bound to Drug Candidate PF-07321332.J Virol. 2022 Apr 27;96(8):e0201321. doi: 10.1128/jvi.02013-21. Epub 2022 Apr 7. J Virol. 2022. PMID: 35389231 Free PMC article.
-
Crystal Structure of SARS-CoV-2 Main Protease in Complex with the Non-Covalent Inhibitor ML188.Viruses. 2021 Jan 25;13(2):174. doi: 10.3390/v13020174. Viruses. 2021. PMID: 33503819 Free PMC article.
-
Structure-based discovery of thiosemicarbazones as SARS-CoV-2 main protease inhibitors.Future Med Chem. 2023 Jun;15(11):959-985. doi: 10.4155/fmc-2023-0034. Epub 2023 Jul 12. Future Med Chem. 2023. PMID: 37435731
-
Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses.Drug Resist Updat. 2020 Dec;53:100721. doi: 10.1016/j.drup.2020.100721. Epub 2020 Aug 26. Drug Resist Updat. 2020. PMID: 33132205 Free PMC article. Review.
-
AI-driven covalent drug design strategies targeting main protease (mpro) against SARS-CoV-2: structural insights and molecular mechanisms.J Biomol Struct Dyn. 2024 Jan 29:1-29. doi: 10.1080/07391102.2024.2308769. Online ahead of print. J Biomol Struct Dyn. 2024. PMID: 38287509 Review.
Cited by
-
Effect of a Substituent in the Fourth Position on the Optical Properties of 2-Oxonicotinonitriles.Russ J Gen Chem. 2022;92(11):2500-2506. doi: 10.1134/S1070363222110366. Epub 2022 Dec 13. Russ J Gen Chem. 2022. PMID: 36532258 Free PMC article.
-
Delta Machine Learning to Improve Scoring-Ranking-Screening Performances of Protein-Ligand Scoring Functions.J Chem Inf Model. 2022 Jun 13;62(11):2696-2712. doi: 10.1021/acs.jcim.2c00485. Epub 2022 May 17. J Chem Inf Model. 2022. PMID: 35579568 Free PMC article. Review.
-
Identification of Potent, Broad-Spectrum Coronavirus Main Protease Inhibitors for Pandemic Preparedness.J Med Chem. 2024 Oct 10;67(19):17454-17471. doi: 10.1021/acs.jmedchem.4c01404. Epub 2024 Sep 27. J Med Chem. 2024. PMID: 39332817 Free PMC article.
-
Identification of SARS-CoV-2 Mpro inhibitors through deep reinforcement learning for de novo drug design and computational chemistry approaches.RSC Med Chem. 2024 Apr 29;15(6):2146-2159. doi: 10.1039/d4md00106k. eCollection 2024 Jun 19. RSC Med Chem. 2024. PMID: 38911172 Free PMC article.
-
On the origins of SARS-CoV-2 main protease inhibitors.RSC Med Chem. 2023 Oct 13;15(1):81-118. doi: 10.1039/d3md00493g. eCollection 2024 Jan 25. RSC Med Chem. 2023. PMID: 38283212 Free PMC article. Review.
References
-
- Press Release of the United States Department of Health and Human Services: June 17, 2021, “Biden Administration to Invest $3 Billion from American Rescue Plan as P...”, accessed June 25.2021.
- Tummino TA; Rezelj VV; Fischer B; Fischer A; O’Meara MJ; Monel B; Vallet T; White KM; Zhang Z; Alon A; et al. Science 2021, doi: 10.1126/science.abi4708. - DOI - PMC - PubMed
- Cannalire R; Cerchia C; Beccari AR; Di Leva FS; Summa VJ Med. Chem 2020, doi: 10.1021/acs.jmedchem.Oc01140. - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous