Quantification of aortic regurgitation utilizing continuous wave Doppler ultrasound

J Am Coll Cardiol. 1986 Sep;8(3):592-9. doi: 10.1016/s0735-1097(86)80188-7.


Aortic regurgitation and mitral stenosis are hemodynamically similar, insofar as both result in passive ventricular filling across a narrow orifice driven by a declining pressure gradient. Because mitral stenosis is successfully characterized by Doppler ultrasound determination of the velocity half-time, or time constant, aortic regurgitation might be quantified in an analogous fashion. Eighty-six patients with diverse causes of aortic regurgitation underwent continuous wave Doppler examination before cardiac catheterization or urgent aortic valve replacement. The Doppler velocity half-time was defined as the time required for the diastolic aortic regurgitation velocity profile to decay by 29%, whereas catheterization pressure half-time was calculated as the time required for transvalvular pressure to decay by 50%. Doppler velocity and catheterization pressure half-times were linearly related (r = 0.91). Doppler velocity half-times were inversely related to regurgitant fraction (r = -0.88). Angiographic severity (1+ = mild to 4+ = severe) was also inversely related to pressure and velocity half-time; a Doppler half-time threshold of 400 ms separated mild (1+, 2+) from significant (3+, 4+) aortic regurgitation with high specificity (0.92) and predictive value (0.90). The Doppler velocity half-time was independent of pulse pressure, mean arterial pressure, ejection fraction and left ventricular end-diastolic pressure. Estimation of transvalvular aortic pressure half-time utilizing continuous wave Doppler ultrasound is a reliable and accurate method for the noninvasive evaluation of the severity of aortic regurgitation.

MeSH terms

  • Acute Disease
  • Adult
  • Aged
  • Angiography
  • Aortic Valve Insufficiency / diagnosis*
  • Aortic Valve Insufficiency / physiopathology
  • Cardiac Catheterization
  • Hemodynamics
  • Humans
  • Middle Aged
  • Ultrasonography*