Poly(l-Lactide) Liquid Crystals with Tailor-Made Properties Toward a Specific Nematic Mesophase Texture

ACS Sustain Chem Eng. 2022 Mar 14;10(10):3323-3334. doi: 10.1021/acssuschemeng.1c08282. Epub 2022 Mar 2.


This paper presents the liquid crystal (LC) properties of poly(l-lactide) (PLLA). Mesophase behavior is investigated using polarized optical microscopy, X-ray diffraction, and differential scanning calorimetry. The performed analyses confirm that pressed PLLA films exhibit the unique capability of self-assembling into a nematic mesophase under the influence of mechanical pressure, temperature, and time. It was originally demonstrated that the chiral nematic mesophase can be obtained by introducing fine powders into the polymer. Based on the research conducted, it was proved that the pressed PLLA films have a chiral nematic mesophase with a nematic-to-isotropic phase transition and a large mesophase stability range overlapping the temperature of the human body, which can persist for years at ambient temperature. The obtained films show tailor-made properties toward a nematic mesophase with a specific texture, including colored planar texture of the chiral nematic mesophase and blue-phase (BP) LC texture. The BP, described for the first time in plain PLLA, occurred over a wider than usual temperature range of stability between isotropic and chiral nematic thermotropic phases (ΔT ≈ 9 °C), which is an advantage of the obtained polymer material, in addition to ease of preparation. This opens up new prospects for advanced photonic green applications.