Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul 1:254:119118.
doi: 10.1016/j.neuroimage.2022.119118. Epub 2022 Mar 19.

Comparing brain asymmetries independently of brain size

Affiliations
Free article

Comparing brain asymmetries independently of brain size

Camille Michèle Williams et al. Neuroimage. .
Free article

Abstract

Studies examining cerebral asymmetries typically divide the l-R Measure (e.g., Left-Right Volume) by the L + R Measure to obtain an Asymmetry Index (AI). However, contrary to widespread belief, such a division fails to render the AI independent from the L + R Measure and/or from total brain size. As a result, variations in brain size may bias correlation estimates with the AI or group differences in AI. We investigated how to analyze brain asymmetries in to distinguish global from regional effects, and report unbiased group differences in cerebral asymmetries in the UK Biobank (N = 40, 028). We used 306 global and regional brain measures provided by the UK Biobank. Global gray and white matter volumes were taken from Freesurfer ASEG, subcortical gray matter volumes from Freesurfer ASEG and subsegmentation, cortical gray matter volumes, mean thicknesses, and surface areas from the Destrieux atlas applied on T1-and T2-weighted images, cerebellar gray matter volumes from FAST FSL, and regional white matter volumes from Freesurfer ASEG. We analyzed the extent to which the L + R Measure, Total Cerebral Measure (TCM, e.g., Total Brain Volume), and l-R TCM predict regional asymmetries. As a case study, we assessed the consequences of omitting each of these predictors on the magnitude and significance of sex differences in asymmetries. We found that the L + R Measure, the TCM, and the l-R TCM predicted the AI of more than 89% of regions and that their relationships were generally linear. Removing any of these predictors changed the significance of sex differences in 33% of regions and the magnitude of sex differences across 13-42% of regions. Although we generally report similar sex and age effects on cerebral asymmetries to those of previous large-scale studies, properly adjusting for regional and global brain size revealed additional sex and age effects on brain asymmetry.

Keywords: Age; Brain asymmetry; Brain volume; Cortical surface area; Cortical thickness; Sex.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Similar articles

Cited by

Publication types