Single-cell multiomics reveals persistence of HIV-1 in expanded cytotoxic T cell clones

Immunity. 2022 Jun 14;55(6):1013-1031.e7. doi: 10.1016/j.immuni.2022.03.004. Epub 2022 Mar 22.

Abstract

Understanding the drivers and markers of clonally expanding HIV-1-infected CD4+ T cells is essential for HIV-1 eradication. We used single-cell ECCITE-seq, which captures surface protein expression, cellular transcriptome, HIV-1 RNA, and TCR sequences within the same single cell to track clonal expansion dynamics in longitudinally archived samples from six HIV-1-infected individuals (during viremia and after suppressive antiretroviral therapy) and two uninfected individuals, in unstimulated conditions and after CMV and HIV-1 antigen stimulation. Despite antiretroviral therapy, persistent antigen and TNF responses shaped T cell clonal expansion. HIV-1 resided in Th1-polarized, antigen-responding T cells expressing BCL2 and SERPINB9 that may resist cell death. HIV-1 RNA+ T cell clones were larger in clone size, established during viremia, persistent after viral suppression, and enriched in GZMB+ cytotoxic effector memory Th1 cells. Targeting HIV-1-infected cytotoxic CD4+ T cells and drivers of clonal expansion provides another direction for HIV-1 eradication.

Keywords: HIV-1 latent reservoir; HIV-1 persistence; HIV-1-induced immune dysfunction; T cell expansion dynamics; TNF response; antigen stimulation; clonal expansion; cytotoxic CD4(+) T lymphocytes; granzyme B; single-cell RNA-seq.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • CD4-Positive T-Lymphocytes
  • Clone Cells
  • HIV Infections*
  • HIV-1*
  • Humans
  • RNA
  • Viremia

Substances

  • RNA