Nematode chromosomes

Genetics. 2022 May 5;221(1):iyac014. doi: 10.1093/genetics/iyac014.

Abstract

The nematode Caenorhabditis elegans has shed light on many aspects of eukaryotic biology, including genetics, development, cell biology, and genomics. A major factor in the success of C. elegans as a model organism has been the availability, since the late 1990s, of an essentially gap-free and well-annotated nuclear genome sequence, divided among 6 chromosomes. In this review, we discuss the structure, function, and biology of C. elegans chromosomes and then provide a general perspective on chromosome biology in other diverse nematode species. We highlight malleable chromosome features including centromeres, telomeres, and repetitive elements, as well as the remarkable process of programmed DNA elimination (historically described as chromatin diminution) that induces loss of portions of the genome in somatic cells of a handful of nematode species. An exciting future prospect is that nematode species may enable experimental approaches to study chromosome features and to test models of chromosome evolution. In the long term, fundamental insights regarding how speciation is integrated with chromosome biology may be revealed.

Keywords: WormBook; centromere; holocentric; meiosis; programmed DNA elimination; repetitive DNA; synteny; telomere.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Caenorhabditis elegans* / genetics
  • Centromere
  • Chromatin / genetics
  • Chromosomes / genetics
  • Nematoda* / genetics
  • Telomere / genetics

Substances

  • Chromatin