NAD+ centric mechanisms and molecular determinants of skeletal muscle disease and aging

Mol Cell Biochem. 2022 Jun;477(6):1829-1848. doi: 10.1007/s11010-022-04408-1. Epub 2022 Mar 25.


The nicotinamide adenine dinucleotide (NAD+) is an essential redox cofactor, involved in various physiological and molecular processes, including energy metabolism, epigenetics, aging, and metabolic diseases. NAD+ repletion ameliorates muscular dystrophy and improves the mitochondrial and muscle stem cell function and thereby increase lifespan in mice. Accordingly, NAD+ is considered as an anti-oxidant and anti-aging molecule. NAD+ plays a central role in energy metabolism and the energy produced is used for movements, thermoregulation, and defense against foreign bodies. The dietary precursors of NAD+ synthesis is targeted to improve NAD+ biosynthesis; however, studies have revealed conflicting results regarding skeletal muscle-specific effects. Recent advances in the activation of nicotinamide phosphoribosyltransferase in the NAD+ salvage pathway and supplementation of NAD+ precursors have led to beneficial effects in skeletal muscle pathophysiology and function during aging and associated metabolic diseases. NAD+ is also involved in the epigenetic regulation and post-translational modifications of proteins that are involved in various cellular processes to maintain tissue homeostasis. This review provides detailed insights into the roles of NAD+ along with molecular mechanisms during aging and disease conditions, such as the impacts of age-related NAD+ deficiencies on NAD+-dependent enzymes, including poly (ADP-ribose) polymerase (PARPs), CD38, and sirtuins within skeletal muscle, and the most recent studies on the potential of nutritional supplementation and distinct modes of exercise to replenish the NAD+ pool.

Keywords: Aging; Diabetes; Epigenetics; Muscle diseases; NAD+; Redox.

Publication types

  • Review

MeSH terms

  • Aging / metabolism
  • Animals
  • Epigenesis, Genetic
  • Mice
  • Muscle, Skeletal / metabolism
  • Muscular Diseases* / metabolism
  • NAD* / metabolism
  • Poly(ADP-ribose) Polymerases / metabolism


  • NAD
  • Poly(ADP-ribose) Polymerases