Internalization of Polymeric Bacterial Peptidoglycan Occurs through Either Actin or Dynamin Dependent Pathways

Microorganisms. 2022 Mar 3;10(3):552. doi: 10.3390/microorganisms10030552.


Peptidoglycan (PGN), a polymeric glycan macromolecule, is a major constituent of the bacterial cell wall and a conserved pathogen-associated molecular pattern (PAMP) that triggers immune responses through cytosolic sensors. Immune cells encounter both PGN polymers and hydrolyzed muropeptides during infections, and primary human innate immune cells respond better to polymeric PGN than the minimal bioactive subunit muramyl dipeptide (MDP). While MDP is internalized through macropinocytosis and/or clathrin-mediated endocytosis, the internalization of particulate polymeric PGN is unresolved. We show here that PGN macromolecules isolated from Bacillus anthracis display a broad range of sizes, making them amenable for multiple internalization pathways. Pharmacologic inhibition indicates that PGN primarily, but not exclusively, is internalized by actin-dependent endocytosis. An alternate clathrin-independent but dynamin dependent pathway supports 20-30% of PGN uptake. In primary monocytes, this alternate pathway does not require activities of RhoA, Cdc42 or Arf6 small GTPases. Selective inhibition of PGN uptake shows that phagolysosomal trafficking, processing and downstream immune responses are drastically affected by actin depolymerization, while dynamin inhibition has a smaller effect. Overall, we show that polymeric PGN internalization occurs through two endocytic pathways with distinct potentials to trigger immune responses.

Keywords: CIE; bacteria; internalization; monocytes; peptidoglycan.