Deamidation of the human eye lens protein γS-crystallin accelerates oxidative aging

Structure. 2022 May 5;30(5):763-776.e4. doi: 10.1016/j.str.2022.03.002. Epub 2022 Mar 25.

Abstract

Cataract, a clouding of the eye lens from protein precipitation, affects millions of people every year. The lens proteins, the crystallins, show extensive post-translational modifications (PTMs) in cataractous lenses. The most common PTMs, deamidation and oxidation, promote crystallin aggregation; however, it is not clear precisely how these PTMs contribute to crystallin insolubilization. Here, we report six crystal structures of the lens protein γS-crystallin (γS): one of the wild-type and five of deamidated γS variants, from three to nine deamidation sites, after sample aging. The deamidation mutations do not change the overall fold of γS; however, increasing deamidation leads to accelerated disulfide-bond formation. Addition of deamidated sites progressively destabilized protein structure, and the deamidated variants display an increased propensity for aggregation. These results suggest that the deamidated variants are useful as models for accelerated aging; the structural changes observed provide support for redox activity of γS-crystallin in the lens.

Keywords: X-ray crystallography; cataract; crystallin; deamidation; disulfide bonding; oxidation; post-translational modification; protein aggregation; protein stability; second virial coefficient.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cataract* / genetics
  • Cataract* / metabolism
  • Humans
  • Lens, Crystalline* / chemistry
  • Lens, Crystalline* / metabolism
  • Oxidation-Reduction
  • Oxidative Stress
  • gamma-Crystallins* / chemistry
  • gamma-Crystallins* / genetics

Substances

  • gamma-Crystallins