Application of nanopore sequencing in diagnosis of secondary infections in patients with severe COVID-19

Zhejiang Da Xue Xue Bao Yi Xue Ban. 2021 Dec 25;50(6):748-754. doi: 10.3724/zdxbyxb-2021-0158.

Abstract

To explore the application value of nanopore sequencing technique in the diagnosis and treatment of secondary infections in patients with severe coronavirus disease 2019 (COVID-19). A total of 77 clinical specimens from 3 patients with severe COVID-19 were collected. After heat inactivation, all samples were subjected to total nucleic acid extraction based on magnetic bead enrichment. The extracted DNA was used for DNA library construction, then nanopore real-time sequencing detection was performed. The sequencing data were subjected to Centrifuge software database species matching and R program differential analysis to obtain potential pathogen identification. Nanopore sequencing results were compared with respiratory pathogen qPCR panel screening and conventional microbiological testing results to verify the effectiveness of nanopore sequencing detection. Nanopore sequencing results showed that positive pathogen were obtained in 44 specimens (57.1%). The potential pathogens identified by nanopore sequencing included , , and , et al. , , were also detected in clinical microbiological culture-based detection; was detected in respiratory pathogen screening qPCR panel; was only detected by the nanopore sequencing technique. Comprehensive considerations with the clinical symptoms, the patient was treated with antibiotics against , and the infection was controlled. Nanopore sequencing may assist the diagnosis and treatment of severe COVID-19 patients through rapid identification of potential pathogens.

Keywords: Coronavirus disease 2019; Metagenomics next-generation sequencing; Nanopore sequencing; Pathogen detection; Severe acute respiratory syndrome coronavirus 2.

MeSH terms

  • COVID-19* / diagnosis
  • Coinfection*
  • Humans
  • Nanopore Sequencing*
  • Nanopores*
  • Sequence Analysis, DNA / methods

Grants and funding

上海市科学技术委员会第二批应急科技攻关专项(20411950200);上海市2020年度“科技创新行动计划”医学创新研究专项(20Z11900900);国家自然科学基金(81801991);中国肝炎防治基金会天晴肝病研究基金(TQGB20200164)