Cytokinin promotes growth cessation in the Arabidopsis root

Curr Biol. 2022 May 9;32(9):1974-1985.e3. doi: 10.1016/j.cub.2022.03.019. Epub 2022 Mar 29.

Abstract

The Arabidopsis root offers good opportunities to investigate how regulated cellular growth shapes different tissues and organs, a key question in developmental biology. Along the root's longitudinal axis, cells sequentially occupy different developmental states. Proliferative meristematic cells give rise to differentiating cells, which rapidly elongate in the elongation zone, then mature and stop growing in the differentiation zone. The phytohormone cytokinin contributes to this zonation by positioning the boundary between the meristem and the elongation zone, called the transition zone. However, the cellular growth profile underlying root zonation is not well understood, and the cellular mechanisms that mediate growth cessation remain unclear. By using time-lapse imaging, genetics, and computational analysis, we analyze the effect of cytokinin on root zonation and cellular growth. We found that cytokinin promotes growth cessation in the distal (shootward) elongation zone in conjunction with accelerating the transition from elongation to differentiation. We estimated cell-wall stiffness by using osmotic treatment experiments and found that cytokinin-mediated growth cessation is associated with cell-wall stiffening and requires the action of an auxin influx carrier, AUX1. Our measurement of growth and cell-wall mechanical properties at a cellular resolution reveal mechanisms via which cytokinin influences cell behavior to shape tissue patterns.

Keywords: Arabidopsis; auxin; cell wall; cytokinin; growth analysis; mechanics; morphogenesis; root development; time-lapse imaging.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis Proteins* / genetics
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis*
  • Cytokinins
  • Gene Expression Regulation, Plant
  • Indoleacetic Acids / pharmacology
  • Meristem
  • Plant Roots

Substances

  • Arabidopsis Proteins
  • Cytokinins
  • Indoleacetic Acids