The Resting-State Neural Network of Delay Discounting

Front Psychol. 2022 Mar 11:13:828929. doi: 10.3389/fpsyg.2022.828929. eCollection 2022.

Abstract

Delay discounting is a common phenomenon in daily life, which refers to the subjective value of a future reward decreasing as a function of time. Previous studies have identified several cortical regions involved in delay discounting, but the neural network constructed by the cortical regions of delay discounting is less clear. In this study, we employed resting-state functional magnetic resonance imaging (RS-fMRI) to measure the spontaneous neural activity in a large sample of healthy young adults and used the Monetary Choice Questionnaire to directly measure participants' level of delay discounting. To identify the neural network of delay discounting at rest, we used an individual difference approach to explore brain regions whose spontaneous activities were related to delay discounting across the whole brain. Then, these brain regions served as seeds to identify the neural network of delay discounting. We found that the fractional amplitude of low-frequency fluctuations (fALFF) of the left insula were positively correlated to delay discounting. More importantly, its connectivity to the anterior cingulate cortex was read out for participants' behavioral performance in the task of delay discounting. In short, our study provides empirical evidence that insula-anterior cingulate cortex connectivity may serve as a part of the neural network for delay discounting.

Keywords: delay discounting; fALFF; functional connectivity; neural network; the insula.