Ethylene oxide functionalization enhances the ionic conductivity of a MOF

Chem Commun (Camb). 2022 Apr 28;58(35):5355-5358. doi: 10.1039/d2cc01286c.

Abstract

Varying the degree of ethylene oxide (EO) functionalization of the zirconium MOF UiO-68 affords two novel MOFs; UiO-68-EO and UiO-68-2EO exhibit solvent-free ionic conductivity upon loading LiTFSI in their pores. Incorporating EO chains provides a pathway for lithium ion migration between the coordinated sites and results in an ionic conductivity of 3.8 × 10-7 S cm-1 and 3.9 × 10-4 S cm-1 at 90 °C for UiO-68-EO/LiTFSI and UiO-68-2EO/LiTFSI respectively.