Endoplasmic Reticulum-Mitochondria Contacts Modulate Reactive Oxygen Species-Mediated Signaling and Oxidative Stress in Brain Disorders: The Key Role of Sigma-1 Receptor

Antioxid Redox Signal. 2022 Oct;37(10-12):758-780. doi: 10.1089/ars.2020.8231. Epub 2022 Jun 24.

Abstract

Significance: Mitochondria-Associated Membranes (MAMs) are highly dynamic endoplasmic reticulum (ER)-mitochondria contact sites that, due to the transfer of lipids and Ca2+ between these organelles, modulate several physiologic processes, such as ER stress response, mitochondrial bioenergetics and fission/fusion events, autophagy, and inflammation. In addition, these contacts are implicated in the modulation of the cellular redox status since several MAMs-resident proteins are involved in the generation of reactive oxygen species (ROS), which can act as both signaling mediators and deleterious molecules, depending on their intracellular levels. Recent Advances: In the past few years, structural and functional alterations of MAMs have been associated with the pathophysiology of several neurodegenerative diseases that are closely associated with the impairment of several MAMs-associated events, including perturbation of the redox state on the accumulation of high ROS levels. Critical Issues: Inter-organelle contacts must be tightly regulated to preserve cellular functioning by maintaining Ca2+ and protein homeostasis, lipid metabolism, mitochondrial dynamics and energy production, as well as ROS signaling. Simultaneously, these contacts should avoid mitochondrial Ca2+ overload, which might lead to energetic deficits and deleterious ROS accumulation, culminating in oxidative stress-induced activation of apoptotic cell death pathways, which are common features of many neurodegenerative diseases. Future Directions: Given that Sig-1R is an ER resident chaperone that is highly enriched at the MAMs and that controls ER to mitochondria Ca2+ flux, as well as oxidative and ER stress responses, its potential as a therapeutic target for neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer, Parkinson, and Huntington diseases should be further explored. Antioxid. Redox Signal. 37, 758-780.

Keywords: Sig-1R; calcium; mitochondria-associated membranes; neurodegeneration; redox status.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain Diseases* / metabolism
  • Endoplasmic Reticulum / metabolism
  • Endoplasmic Reticulum Stress
  • Humans
  • Lipids
  • Membrane Proteins / metabolism
  • Mitochondria / metabolism
  • Neurodegenerative Diseases* / metabolism
  • Oxidative Stress
  • Reactive Oxygen Species / metabolism
  • Receptors, sigma
  • Sigma-1 Receptor

Substances

  • Lipids
  • Membrane Proteins
  • Reactive Oxygen Species
  • Receptors, sigma