Downregulation of m6A Methyltransferase in the Hippocampus of Tyrobp -/- Mice and Implications for Learning and Memory Deficits

Front Neurosci. 2022 Mar 21:16:739201. doi: 10.3389/fnins.2022.739201. eCollection 2022.

Abstract

Loss-of-function mutations in the gene that encodes TYRO protein kinase-binding protein (TYROBP) cause Nasu-Hakola disease, a heritable disease resembling Alzheimer's disease (AD). Methylation of N6 methyl-adenosine (m6A) in mRNA plays essential roles in learning and memory. Aberrant m6A methylation has been detected in AD patients and animal models. In the present study, Tyrobp-/- mice showed learning and memory deficits in the Morris water maze, which worsened with age. Tyrobp-/- mice also showed elevated levels of total tau, Ser202/Thr205-phosphorylated tau and amyloid β in the hippocampus and cerebrocortex, which worsened with aging. The m6A methyltransferase components METTL3, METTL14, and WTAP were downregulated in Tyrobp-/- mice, while expression of demethylases that remove the m6A modification (e.g., FTO and ALKBH5) were unaltered. Methylated RNA immunoprecipitation sequencing identified 498 m6A peaks that were upregulated in Tyrobp-/- mice, and 312 m6A peaks that were downregulated. Bioinformatic analysis suggested that most of these m6A peaks occur in sequences near stop codons and 3'-untranslated regions. These findings suggest an association between m6A RNA methylation and pathological TYROBP deficiency.

Keywords: ALKBH5; FTO; METTL14; METTL3; MeRIP-seq; Tyrobp–/– mice; WTAP; m6A methylation.