Separating Neural Oscillations from Aperiodic 1/f Activity: Challenges and Recommendations
- PMID: 35389160
- PMCID: PMC9588478
- DOI: 10.1007/s12021-022-09581-8
Separating Neural Oscillations from Aperiodic 1/f Activity: Challenges and Recommendations
Abstract
Electrophysiological power spectra typically consist of two components: An aperiodic part usually following an 1/f power law [Formula: see text] and periodic components appearing as spectral peaks. While the investigation of the periodic parts, commonly referred to as neural oscillations, has received considerable attention, the study of the aperiodic part has only recently gained more interest. The periodic part is usually quantified by center frequencies, powers, and bandwidths, while the aperiodic part is parameterized by the y-intercept and the 1/f exponent [Formula: see text]. For investigation of either part, however, it is essential to separate the two components. In this article, we scrutinize two frequently used methods, FOOOF (Fitting Oscillations & One-Over-F) and IRASA (Irregular Resampling Auto-Spectral Analysis), that are commonly used to separate the periodic from the aperiodic component. We evaluate these methods using diverse spectra obtained with electroencephalography (EEG), magnetoencephalography (MEG), and local field potential (LFP) recordings relating to three independent research datasets. Each method and each dataset poses distinct challenges for the extraction of both spectral parts. The specific spectral features hindering the periodic and aperiodic separation are highlighted by simulations of power spectra emphasizing these features. Through comparison with the simulation parameters defined a priori, the parameterization error of each method is quantified. Based on the real and simulated power spectra, we evaluate the advantages of both methods, discuss common challenges, note which spectral features impede the separation, assess the computational costs, and propose recommendations on how to use them.
Keywords: 1/f exponent; EEG/MEG; FOOOF; IRASA; Neural oscillations; Spectra.
© 2022. The Author(s).
Conflict of interest statement
The authors have no conflicts of interest to declare that are relevant to the content of this article.
Figures
Similar articles
-
Electrophysiological Frequency Band Ratio Measures Conflate Periodic and Aperiodic Neural Activity.eNeuro. 2020 Dec 22;7(6):ENEURO.0192-20.2020. doi: 10.1523/ENEURO.0192-20.2020. Print 2020 Nov-Dec. eNeuro. 2020. PMID: 32978216 Free PMC article.
-
Parameterizing neural power spectra into periodic and aperiodic components.Nat Neurosci. 2020 Dec;23(12):1655-1665. doi: 10.1038/s41593-020-00744-x. Epub 2020 Nov 23. Nat Neurosci. 2020. PMID: 33230329 Free PMC article.
-
Unveiling age-independent spectral markers of propofol-induced loss of consciousness by decomposing the electroencephalographic spectrum into its periodic and aperiodic components.Front Aging Neurosci. 2023 Jan 18;14:1076393. doi: 10.3389/fnagi.2022.1076393. eCollection 2022. Front Aging Neurosci. 2023. PMID: 36742202 Free PMC article.
-
Clinical applications of EEG power spectra aperiodic component analysis: A mini-review.Clin Neurophysiol. 2022 Nov;143:1-13. doi: 10.1016/j.clinph.2022.08.010. Epub 2022 Aug 28. Clin Neurophysiol. 2022. PMID: 36088797 Review.
-
Magnetoencephalography for brain electrophysiology and imaging.Nat Neurosci. 2017 Feb 23;20(3):327-339. doi: 10.1038/nn.4504. Nat Neurosci. 2017. PMID: 28230841 Review.
Cited by
-
Neural correlates of motor learning: Network communication versus local oscillations.Netw Neurosci. 2024 Oct 1;8(3):714-733. doi: 10.1162/netn_a_00374. eCollection 2024. Netw Neurosci. 2024. PMID: 39355447 Free PMC article.
-
Multiple Intrinsic Timescales Govern Distinct Brain States in Human Sleep.J Neurosci. 2024 Oct 16;44(42):e0171242024. doi: 10.1523/JNEUROSCI.0171-24.2024. J Neurosci. 2024. PMID: 39187378
-
Globally elevated excitation-inhibition ratio in children with autism spectrum disorder and below-average intelligence.Mol Autism. 2022 May 12;13(1):20. doi: 10.1186/s13229-022-00498-2. Mol Autism. 2022. PMID: 35550191 Free PMC article.
-
Resting-state oscillations reveal disturbed excitation-inhibition ratio in Alzheimer's disease patients.Sci Rep. 2023 May 7;13(1):7419. doi: 10.1038/s41598-023-33973-8. Sci Rep. 2023. PMID: 37150756 Free PMC article.
-
Self-selected versus imposed running intensity and the acute effects on mood, cognition, and (a)periodic brain activity.Cogn Neurodyn. 2024 Oct;18(5):2221-2241. doi: 10.1007/s11571-024-10084-2. Epub 2024 Mar 1. Cogn Neurodyn. 2024. PMID: 39555283 Free PMC article.
References
-
- Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzsáki G. Cross-frequency phase-phase coupling between θ and γ oscillations in the hippocampus. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience. 2012;32(2):423–435. doi: 10.1523/JNEUROSCI.4122-11.2012. - DOI - PMC - PubMed
-
- Bódizs, R., Szalárdy, O., Horváth, C., Ujma, P. P., Gombos, F., Simor, P., Pótári, A., Zeising, M., Steiger, A., & Dresler, M. (2021). A set of composite, non-redundant EEG measures of NREM sleep based on the power law scaling of the Fourier spectrum. Scientific Reports, 11(1), 2041. 10.1038/s41598-021-81230-7 - DOI - PMC - PubMed
-
- Bruining H, Hardstone R, Juarez-Martinez EL, Sprengers J, Avramiea A-E, Simpraga S, Houtman SJ, Poil S-S, Dallares E, Palva S, Oranje B, Matias Palva J, Mansvelder HD, Linkenkaer-Hansen K. Measurement of excitation-inhibition ratio in autism spectrum disorder using critical brain dynamics. Scientific Reports. 2020;10(1):9195. doi: 10.1038/s41598-020-65500-4. - DOI - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
