Improving the Mechanical Properties of Fly Ash-Based Geopolymer Composites with PVA Fiber and Powder

Materials (Basel). 2022 Mar 23;15(7):2363. doi: 10.3390/ma15072363.

Abstract

In this work, polyvinyl alcohol (PVA) fiber and powder were added to geopolymer composites to toughen fly ash-based geopolymer, and their different toughening mechanisms were revealed. Firstly, different contents of active granulated blast furnace slag (GBFS) were added to the geopolymer to improve the reactivity of the GBFS/fly ash-based geopolymer, and the best ratio of GBFS and fly ash was determined through experiments testing the mechanical properties. Different contents of PVA powders and fibers were utilized to toughen the geopolymer composites. The effect of the addition forms and contents of PVA on the mechanical properties, freeze-thaw cycle resistance, and thermal decomposition properties of geopolymer composites were systematically studied. The results showed that the toughening effect of PVA fiber was better than that of PVA powder. The best compressive strength and flexural strength of geopolymer composites toughened by PVA fiber were 41.11 MPa and 8.43 MPa, respectively. In addition, the composition of geopolymer composites was explored through microstructure analysis, and the toughening mechanisms of different forms of PVA were explained. This study provided a new strategy for the toughening of geopolymer composites, which can promote the low-cost and efficient application of geopolymer composites in the field of building materials.

Keywords: geopolymer composites; mechanical strength; polyvinyl alcohol; toughening mechanism.