Large deviations of a susceptible-infected-recovered model around the epidemic threshold

Phys Rev E. 2022 Mar;105(3-1):034313. doi: 10.1103/PhysRevE.105.034313.

Abstract

We numerically study the dynamics of the SIR disease model on small-world networks by using a large-deviation approach. This allows us to obtain the probability density function of the total fraction of infected nodes and of the maximum fraction of simultaneously infected nodes down to very small probability densities like 10^{-2500}. We analyze the structure of the disease dynamics and observed three regimes in all probability density functions, which correspond to quick mild, quick extremely severe, and sustained severe dynamical evolutions, respectively. Furthermore, the mathematical rate functions of the densities are investigated. The results indicate that the so-called large-deviation property holds for the SIR model. Finally, we measured correlations with other quantities like the duration of an outbreak or the peak position of the fraction of infections, also in the rare regions which are not accessible by standard simulation techniques.