Background: Magnetic resonance imaging (MRI) is a multi-sequence imaging technique. Although MRI is the most sensitive method for detecting breast cancer, it is limited in evaluating the malignant possibility of non-mass enhanced (NME) breast lesions. It is also rarely reported whether MRI can further indicate the invasion of the lesions. In this article, we explore the differentiation of MRI characteristics between benign and malignant NME lesions and determine which features are associated with invasion.
Methods: The MRI findings of 118 NME lesions were evaluated retrospectively to explore the characteristics of the benign and malignant NME lesions in different MRI sequences including dynamic contrast-enhanced (DCE) MRI and diffusion-weighted imaging (DWI). The difference of MRI findings between benign and malignant NME lesions were determined by Pearson χ2 test or Fisher's exact test, and the diagnostic value of features for malignancy was evaluated by receiver operating characteristic (ROC) curve.
Results: This study included 118 NME lesions (62 benign and 56 malignant) in 118 patients. We found a segmental distribution, clustered-ring enhancement, wash-out dynamic curve, and lower apparent diffusion coefficient (ADC) value (P=0.01, <0.001, 0.02, 0.001) were associated with malignancy. Wash-out dynamic curves, diffusion restriction on DWI, lower ADC values were more advantageous in distinguishing invasive NME cancer from benign lesions than ductal carcinoma in situ (DCIS) (P<0.001, <0.001, 0.027). Further analysis showed that there were statistical differences between invasive carcinoma and carcinoma in situ in terms of wash-out dynamic curves, diffusion restriction on DWI and lower ADC values (P=0.001, 0.014, 0.024).
Conclusions: MRI is a valuable way to identify malignant NME lesions and could predict the invasion of the lesions. Compared with carcinoma in situ, some sequences have more advantages in distinguishing invasive carcinoma from benign lesions.
Keywords: Breast; invasion; magnetic resonance imaging (MRI); non-mass enhancement.
2022 Annals of Translational Medicine. All rights reserved.