Neuroprotective effects of DHA-derived peroxidation product 4(RS)-4-F4t-neuroprostane on microglia

Free Radic Biol Med. 2022 May 20:185:1-5. doi: 10.1016/j.freeradbiomed.2022.04.002. Epub 2022 Apr 18.

Abstract

The abundance of docosahexaenoic acid (DHA) in brain membrane phospholipids has stimulated studies to explore its role in neurological functions. Upon released from phospholipids, DHA undergoes enzymatic reactions resulting in synthesis of bioactive docosanoids and prostanoids. However, these phospholipids are also prone to non-enzymatic reactions leading to more complex pattern of metabolites. A non-enzymatic oxidized product of DHA, 4(RS)-4-F4t-Neuroprostane (44FNP), has been identified in cardiac and brain tissues. In this study, we examined effects of the 44FNP on oxidative and inflammatory responses in microglial cells treated with lipopolysaccharide (LPS). The 44FNP attenuated LPS-induced production of reactive oxygen species (ROS) in both primary and immortalized microglia (BV2). It also attenuated LPS-induced inflammation through suppressing NFκB-p65 and levels of iNOS and TNFα. In addition, 44FNP also suppressed LPS-induced mitochondrial dysfunction and upregulated the Nrf2/HO-1 antioxidative pathway. In sum, these findings with microglial cells demonstrated neuroprotective effects of this 44FNP and shed light into the potential of nutraceutical therapy for neurodegenerative diseases.

Keywords: 4(RS)-4-F4t-Neuroprostane; Antioxidant, and anti-inflammatory; Microglia.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Docosahexaenoic Acids / metabolism
  • Lipopolysaccharides / pharmacology
  • Microglia
  • Neuroprostanes*
  • Neuroprotective Agents* / pharmacology
  • Phospholipids / metabolism

Substances

  • 4-F4t-neuroprostane
  • Lipopolysaccharides
  • Neuroprostanes
  • Neuroprotective Agents
  • Phospholipids
  • Docosahexaenoic Acids