Drought altered trophic dynamics of an important natural saline lake: A stable isotope approach

Sci Total Environ. 2022 Aug 15;834:155338. doi: 10.1016/j.scitotenv.2022.155338. Epub 2022 Apr 19.


Climate change and associated droughts threaten the ecology and resilience of natural saline lakes globally. There is a distinct lack of research regarding their ecological response to climatic events in the Global South. This region is predicted to experience climatic events such as El Niño-Southern Oscillation (ENSO) more often and with greater severity with the potential to alter the structure and functioning of aquatic ecosystems significantly. From 2015 to 2016 South Africa experienced one of the most severe country-wide droughts as a result of a strong ENSO event. Our study aimed to investigate the effect of this supra-seasonal drought on the trophic structure of fish communities in a naturally saline shallow lake of a Ramsar wetland using stable isotope techniques. Fishes and potential basal sources were collected from the lake, during predrought conditions in 2010 and after severe drought (recovery phase; 2017). The δ13C and δ15N values of food web elements were determined and analysed using Bayesian mixing models and Bayesian Laymen metrics to establish the proportional contribution of C3 and C4 basal sources to the fish (consumer) diets, and examine the fish community in terms of isotopic niche and trophic structure, respectively. Fish consumers relied predominantly on C3 basal sources in the predrought and shifted to greater reliance on C4 basal sources, decreased isotopic niche space use and a reduction in trophic length in the recovery phase. Drought altered the type and abundance of the basal sources available by limiting sources to those that are more drought-tolerant, reducing the trophic pathways of the food web with no significant alterations in the fish community. These results demonstrate the resilience and biological plasticity of Lake Nyamithi and its aquatic fauna, highlighting the importance of freshwater inflow to saline lakes with alterations thereof posing a significant threat to their continued functioning.

Keywords: Climate change; Ecosystem resilience; Endorheic lake; Salinity; Southern Africa; Stable isotope analysis.

MeSH terms

  • Animals
  • Bayes Theorem
  • Droughts*
  • Ecosystem
  • Fishes / physiology
  • Food Chain
  • Isotopes
  • Lakes* / chemistry


  • Isotopes