A flat band structure in momentum space is considered key for the realization of novel phenomena. A topological flat band, also known as a drumhead state, is an ideal platform to drive new exotic topological quantum phases. Using angle-resolved photoemission spectroscopy experiments, we reveal the emergence of a highly localized surface state in a topological semimetal BaAl4 and provide its full energy and momentum space topology. We find that the observed surface state is localized in momentum, inside a square-shaped bulk Dirac nodal loop, and in energy, leading to a flat band and a peak in the density of state. These results imply this class of materials as an experimental realization of drumhead surface states and provide an important reference for future studies of the fundamental physics of correlated quantum effects in topological materials.
Keywords: flat bands; photoemission spectroscopy; surface states; topological materials.