Preparation of Hierarchically Porous Metal-Organic Frameworks via Slow Chemical Vapor Etching for CO2 Cycloaddition

Inorg Chem. 2022 May 9;61(18):6881-6887. doi: 10.1021/acs.inorgchem.2c00223. Epub 2022 Apr 27.

Abstract

Hierarchically porous metal-organic frameworks (HP-MOFs) are a class of promising functional material with micropores, mesopores, and/or macropores, which can address the issue of slow mass transfer and less exposed active sites for primitive microporous MOFs. Despite many attempts that have been achieved through a variety of techniques to date, there is still a myriad of spaces that urgently need to be exploited. In this work, we report the novel synthesis of HP-MOFs via slow chemical steam etching. The preparation process can be subtly achieved using water vapor as an etchant; meanwhile, the addition of ethanol into the vapor atmosphere is carried out because it can stabilize the MOF framework well with its hydrophobic alkane tails, thereby slowing the etching rate toward MOFs, successfully realizing the controllable etching manner of MOF components. Furthermore, the joint influence of the water content and etching temperature on the MOF backbone structure etched has thus been investigated in detail. Impressively, we can harvest desired HP-MOFs with the retained crystalline structure at a water content of 50% and an etching temperature of 120 °C. The resulting HK-120/50 product etched exhibits excellent catalytic activity and stability in [2 + 3] cycloaddition of CO2 than pristine MOF, which can be attributed to the more exposure of active sites and the acceleration of mass transportation across the entire MOF skeleton. Noteworthy, the strategy proposed in this study may be extended to other HP-MOF construction systems due to the lability of most MOFs toward the chemical water vapor.