Finding a chink in the armor: Update, limitations, and challenges toward successful antivirals against flaviviruses

PLoS Negl Trop Dis. 2022 Apr 28;16(4):e0010291. doi: 10.1371/journal.pntd.0010291. eCollection 2022 Apr.

Abstract

Flaviviruses have caused large epidemics and ongoing outbreaks for centuries. They are now distributed in every continent infecting up to millions of people annually and may emerge to cause future epidemics. Some of the viruses from this group cause severe illnesses ranging from hemorrhagic to neurological manifestations. Despite decades of research, there are currently no approved antiviral drugs against flaviviruses, urging for new strategies and antiviral targets. In recent years, integrated omics data-based drug repurposing paired with novel drug validation methodologies and appropriate animal models has substantially aided in the discovery of new antiviral medicines. Here, we aim to review the latest progress in the development of both new and repurposed (i) direct-acting antivirals; (ii) host-targeting antivirals; and (iii) multitarget antivirals against flaviviruses, which have been evaluated both in vitro and in vivo, with an emphasis on their targets and mechanisms. The search yielded 37 compounds that have been evaluated for their efficacy against flaviviruses in animal models; 20 of them are repurposed drugs, and the majority of them exhibit broad-spectrum antiviral activity. The review also highlighted the major limitations and challenges faced in the current in vitro and in vivo evaluations that hamper the development of successful antiviral drugs for flaviviruses. We provided an analysis of what can be learned from some of the approved antiviral drugs as well as drugs that failed clinical trials. Potent in vitro and in vivo antiviral efficacy alone does not warrant successful antiviral drugs; current gaps in studies need to be addressed to improve efficacy and safety in clinical trials.

Publication types

  • Review

MeSH terms

  • Animals
  • Antiviral Agents / pharmacology
  • Antiviral Agents / therapeutic use
  • Drug Repositioning
  • Flavivirus*
  • Hepatitis C, Chronic* / drug therapy
  • Humans
  • Viruses*

Substances

  • Antiviral Agents

Grant support

The author(s) received no specific funding for this work.