Anti-fibrotic effects of pharmacologic FGF-2: a review of recent literature

J Mol Med (Berl). 2022 Jun;100(6):847-860. doi: 10.1007/s00109-022-02194-3. Epub 2022 Apr 28.

Abstract

Fibrosis is a process of pathological tissue repair that replaces damaged, formerly functional tissue with a non-functional, collagen-rich scar. Complications of fibrotic pathologies, which can arise in numerous organs and from numerous conditions, result in nearly half of deaths in the developed world. Despite this, therapies that target fibrosis at its mechanistic roots are still notably lacking. The ubiquity of the occurrence of fibrosis in myriad organs emphasizes the fact that there are shared mechanisms underlying fibrotic conditions, which may serve as common therapeutic targets for multiple fibrotic diseases of varied organs. Thus, study of the basic science of fibrosis and of anti-fibrotic modalities is critical to therapeutic development and may have potential to translate across organs and disease states. Fibroblast growth factor 2 (FGF-2) is a broadly studied member of the fibroblast growth factors, a family of multipotent cytokines implicated in diverse cellular and tissue processes, which has previously been recognized for its anti-fibrotic potential. However, the mechanisms underlying this potential are not fully understood, nor is the potential for its use to ameliorate fibrosis in diverse pathologies and tissues. Presented here is a review of recent literature that sheds further light on these questions, with the hopes of inspiring further research into the mechanisms underlying the anti-fibrotic activities of FGF-2, as well as the disease conditions for which pharmacologic FGF-2 might be a useful option in the future.

Keywords: FGF-2; Fibroblast; Fibroblast growth factors; Fibrosis; Regeneration.

Publication types

  • Review

MeSH terms

  • Cytokines / metabolism
  • Fibroblast Growth Factor 2*
  • Fibroblast Growth Factors*
  • Fibrosis
  • Humans

Substances

  • Cytokines
  • Fibroblast Growth Factor 2
  • Fibroblast Growth Factors