Simultaneous detection of melatonin and six metabolites of L-tryptophan pathway in rat gastric mucosa

J Physiol Pharmacol. 2021 Dec;72(6). doi: 10.26402/jpp.2021.6.15. Epub 2022 Apr 24.

Abstract

Melatonin (N-acetyl-5-methoxytryptamine) is an indoleamine synthesized in vertebrates mainly in the pineal gland, and is known to be involved mainly in thermoregulation and control of the circadian rhythm. That indoleamine can affect the auto-, para- and endocrine pathways, regulating body functions and affecting the metabolism of animals and humans. In addition to the pineal gland, melatonin can be synthesized in many extra-pineal tissues, mainly in the gastrointestinal tract. Previous studies have shown that melatonin plays an important role in the defense system of the gastrointestinal mucosa, demonstrating a protective effect on the gastrointestinal tract and the acceleration of healing of chronic ulcers through the scavenging of reactive oxygen metabolites (ROS) and the activation of protective nitric oxide (NO) and vasodilator neuropeptides released from the sensory afferent neurons. The process of converting the melatonin precursor L-tryptophan into melatonin is already known, but not all aspects of this process for the synthesis of other metabolites of this pathway have been fully elucidated and this issue remains poorly understood. In this study, the conversion of L-tryptophan to melatonin and other metabolites was determined in gastric mucosa collected from rats with or without intragastric (i.g.) melatonin or L-tryptophan administration, both administered at a single dose of 50 mg/kg. For the determination of five metabolites of L-tryptophan: kynurenine, 5-hydroxytryptamine, 5-hydroxytryptophan, anthranilic acid, indole-3-acetic acid together with melatonin, we have modified the previously developed high-performance liquid chromatography (HPLC) method using a native fluorescence detection system and UV-VIS. The obtained results show that: 1) L-tryptophan is converted into melatonin in the gastric mucosa during the day, e.g. after eating a meal containing L-tryptophan, as it was imitated and confirmed by our study, in which this amino acid was administered directly to the stomach, 2) the gastric mucosa is capable of producing melatonin in much greater amounts than those recorded in the blood serum of rats given a single dose of L-tryptophan, and 3) apart from melatonin, the only serum levels of these five metabolites of the L-tryptophan metabolic pathway are detectable, while their level in the gastric mucosa is low and barely detectable under physiological conditions. Our present observations support the notion that the gastric mucosa is one of the main sources of melatonin production from L-tryptophan outside the pineal gland.

MeSH terms

  • Animals
  • Gastric Mucosa / metabolism
  • Melatonin* / metabolism
  • Pineal Gland* / metabolism
  • Rats
  • Stomach Ulcer* / metabolism
  • Tryptophan / metabolism
  • Tryptophan / pharmacology

Substances

  • Tryptophan
  • Melatonin