Electrochemical reduction of CO2 to ethylene on Cu/Cu x O-GO composites in aqueous solution

RSC Adv. 2020 May 6;10(30):17572-17581. doi: 10.1039/d0ra02754e. eCollection 2020 May 5.

Abstract

Here, we present fabrication of Graphene oxide (GO) supported Cu/Cu x O nano-electrodeposits which can efficiently and selectively electroreduce CO2 into ethylene with a faradaic efficiency (F.E) of 34% and a conversion rate of 194 mmol g-1 h-1 at -0.985 V vs. RHE. The effect of catalyst morphology, working electrode fabricational techniques, the extent of metal-GO interaction and the oxide content in Cu/Cu x O, was studied in detail so as to develop a protocol for the fabrication of an active, stable and selective catalyst for efficient electro-production of ethylene from CO2. Moreover, a detailed comparative study about the effect of the GO support, and the nature of the cathodic collection substrate used for the electro-deposition is presented.