Bait input altered microbial community structure and increased greenhouse gases production in coastal wetland sediment

Water Res. 2022 Jun 30:218:118520. doi: 10.1016/j.watres.2022.118520. Epub 2022 Apr 29.

Abstract

Coastal wetland reclamation contributed to development of aquaculture industry, and the residual bait accumulation in aquaculture processes could influence biogeochemical elements cycling, which threaten ecological functions and services in aquaculture and adjacent ecosystems. However, systematic studies for changes in sediment microbial community structure and greenhouse gasses (GHGs) production, as well as environmental parameters following bait input at time scale are still rare. A 90-day incubation experiment was conducted using sediment collected from coastal wetland in Qi'ao Island in southern China, followed by the observations of temporal variations of physicochemical properties, sediment microbial community, and GHGs production in response to different amounts of bait input (0, 20, and 40 mg bait g-1 wet sediment). The results showed that dissolved oxygen of overlying water was profoundly decreased owing to bait input, while dissolved organic carbon of overlying water and several sediment properties (e.g., organic matter, sulfide, and ammonium) varied in reverse patterns. Meanwhile, bait input led to significant loss of microbial community richness and diversity, and strongly altered microbial compositions from aerobic, slow-growing, and oligotrophic (Actinobacteriota, Chloroflexi, and Acidobacteriota) to anaerobic, fast-growing, and copiotrophic (Firmicutes and Bacteroidota). Moreover, both GHGs production and global warming potential were significantly enhanced by bait input, implying that aquaculture ecosystem is an important hotspot for global GHGs emission. Overall, bait input triggered quick responses of physicochemical properties, sediment microbial community, and GHGs production, followed by long-term resilience of the ecosystem. This study could provide new insight into temporal interactive effects of bait input on physicochemical properties, microbial community, and GHGs production, which can enhance the understanding of the temporal dynamics and ecological impacts of coastal aquaculture activities and emphasize the necessity of sustainable assessment and management in aquaculture ecosystems.

Keywords: Aquaculture; Bait input; Coastal wetland reclamation; Greenhouse gases production; Microbial community.

MeSH terms

  • Greenhouse Gases* / analysis
  • Methane / analysis
  • Microbiota*
  • Water
  • Wetlands

Substances

  • Greenhouse Gases
  • Water
  • Methane