Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul:146:105558.
doi: 10.1016/j.compbiomed.2022.105558. Epub 2022 Apr 27.

Predicting multiple types of MicroRNA-disease associations based on tensor factorization and label propagation

Affiliations

Predicting multiple types of MicroRNA-disease associations based on tensor factorization and label propagation

Na Yu et al. Comput Biol Med. 2022 Jul.

Abstract

MicroRNAs (miRNAs) play important regulatory roles in the pathogenesis and progression of diseases. Most existing bioinformatics methods only study miRNA-disease binary association prediction. However, there are many types of associations between miRNA and disease. In addition, the miRNA-disease-type association dataset has inherent noise and incompleteness. In this paper, a novel method based on tensor factorization and label propagation (TFLP) is proposed to alleviate the above problems. First, as an effective tensor factorization method, tensor robust principal component analysis (TRPCA) is applied to the original multiple-type miRNA-disease associations to obtain a clean and complete low-rank prediction tensor. Second, the Gaussian interaction profile (GIP) kernel is used to describe the similarity of disease pairs and the similarity of miRNA pairs. Then, they are combined with disease semantic similarity and miRNA functional similarity to obtain an integrated disease similarity network and an integrated miRNA similarity network, respectively. Finally, the low-rank association tensor and the biological similarity as auxiliary information are introduced into label propagation. The prediction performance of the algorithm is improved by iterative propagation of labeled information to unlabeled samples. Extensive experiments reveal that the proposed TFLP method outperforms other state-of-the-art methods for predicting multiple types of miRNA-disease associations. The data and source codes are available at https://github.com/nayu0419/TFLP.

Keywords: Disease; Label propagation; MicroRNA; Multiple-type miRNA-disease associations; Tensor factorization.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources