Increasing Complexity in a Conformer Space Step-by-Step: Weighing London Dispersion against Cation-π Interactions

J Am Chem Soc. 2022 May 25;144(20):9007-9022. doi: 10.1021/jacs.2c01381. Epub 2022 May 12.

Abstract

We report an evaluation of the importance of London dispersion in moderately large (up to 36 heavy atoms) organic molecules by means of a molecular torsion balance whose conformations "weigh" one interaction against another in the absence of solvents. The experimental study, with gas-phase cryogenic ion vibrational predissociation (CIVP) spectroscopy, solid-state Fourier transfer infrared (FT-IR), and single-crystal X-ray crystallography, is accompanied by density functional theory calculations, including an extensive search and analysis of accessible conformations. We begin with the unsubstituted molecular torsion balance, and then step up the complexity systematically by adding alkyl groups incrementally as dispersion energy donors (DEDs) to achieve a degree of chemical complexity comparable to what is typically found in transition states for many regio- and stereoselective reactions in organic and organometallic chemistry. We find clear evidence for the small attractive contribution by DEDs, as had been reported in other studies, but we also find that small individual contributions by London dispersion, when they operate in opposition to other weak noncovalent interactions, produce composite effects on the structure that are difficult to predict intuitively, or by modern quantum chemical calculations. The experimentally observed structures, together with a reasonable value for a reference cation-π interaction, indicate that the pairwise interaction between two tert-butyl groups, in the best case, is modest. Moreover, the visualization of the conformational space, and comparison to spectroscopic indicators of the structure, as one steps up the complexity of the manifold of noncovalent interactions, makes clear that in silico predictive ability for the structure of moderately large, flexible, organic molecules falters sooner than one might have expected.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cations
  • London
  • Molecular Conformation
  • Quantum Theory*
  • Spectroscopy, Fourier Transform Infrared

Substances

  • Cations