DFT exploration of adsorptive performances of borophene to small sulfur-containing gases

J Mol Model. 2022 May 12;28(6):146. doi: 10.1007/s00894-022-05145-4.

Abstract

Density functional theory (DFT) calculations were applied to study the ability of B36 to adsorb H2S, SO2, SO3, CH3SH, (CH3)2S, and C4H4S gases. Several exchange-correlation including B97D, PBE, B3LYP, M062X, and WB97XD were utilized to evaluate adsorption energies. The initial results showed that boundary boron atoms are the most appropriate interaction sites. The adsorption energies, electron density, electron localized function, and differential charge density plots confirmed the formation of chemical covalent bonds only between SOx and B36. The results of thermochemistry analysis revealed the exothermic nature of the adsorption of sulfur-containing gases on B36; the highest values of ∆H298 were found for SO3/B36 and SO2/B36 systems. The electronic absorption spectra and DOS of B36 did not exhibit significant variations after gases adsorption, while the modeled CD spectra showed a remarkable change in the case of the SOx/B36 system. Accordingly, B36 is not suggested for detecting the studied gases. The effect of imposing mono vacancy defect and external electric field to the adsorption of titled gases on the sorbent showed, while the former did not affect the adsorption energies significantly the later improved the adsorption of gas molecules on the B36 system. The results of the current study could provide deeper molecular insight on the removal of SOx gases by B36 system.

Keywords: Adsorption; Borophene; DFT; SO2; SO3.