Innovations in Genomics and Big Data Analytics for Personalized Medicine and Health Care: A Review

Int J Mol Sci. 2022 Apr 22;23(9):4645. doi: 10.3390/ijms23094645.

Abstract

Big data in health care is a fast-growing field and a new paradigm that is transforming case-based studies to large-scale, data-driven research. As big data is dependent on the advancement of new data standards, technology, and relevant research, the future development of big data applications holds foreseeable promise in the modern day health care revolution. Enormously large, rapidly growing collections of biomedical omics-data (genomics, proteomics, transcriptomics, metabolomics, glycomics, etc.) and clinical data create major challenges and opportunities for their analysis and interpretation and open new computational gateways to address these issues. The design of new robust algorithms that are most suitable to properly analyze this big data by taking into account individual variability in genes has enabled the creation of precision (personalized) medicine. We reviewed and highlighted the significance of big data analytics for personalized medicine and health care by focusing mostly on machine learning perspectives on personalized medicine, genomic data models with respect to personalized medicine, the application of data mining algorithms for personalized medicine as well as the challenges we are facing right now in big data analytics.

Keywords: big data analytics; computational approaches; genomics; health; personalized medicine.

Publication types

  • Review

MeSH terms

  • Big Data
  • Data Science*
  • Delivery of Health Care
  • Genomics
  • Precision Medicine* / methods