Band Polarization Effect on the Kondo State in a Zigzag Silicene Nanoribbon

Nanomaterials (Basel). 2022 Apr 27;12(9):1480. doi: 10.3390/nano12091480.

Abstract

Using the Numerical Renormalization Group method, we study the properties of a quantum impurity coupled to a zigzag silicene nanoribbon (ZSNR) that is subjected to the action of a magnetic field applied in a generic direction. We propose a simulation of what a scanning tunneling microscope will see when investigating the Kondo peak of a magnetic impurity coupled to the metallic edge of this topologically non-trivial nanoribbon. This system is subjected to an external magnetic field that polarizes the host much more strongly than the impurity. Thus, we are indirectly analyzing the ZSNR polarization through the STM analysis of the fate of the Kondo state subjected to the influence of the polarized conduction electron band. Our numerical simulations demonstrate that the spin-orbit-coupling-generated band polarization anisotropy is strong enough to have a qualitative effect on the Kondo peak for magnetic fields applied along different directions, suggesting that this contrast could be experimentally detected.

Keywords: Kondo effect; silicene; topological insulators.