Simulated assessment of light transport through ischaemic skin flaps

Br J Oral Maxillofac Surg. 2022 Sep;60(7):969-973. doi: 10.1016/j.bjoms.2022.03.004. Epub 2022 Mar 18.

Abstract

Currently, free flaps and pedicled flaps are assessed for reperfusion in postoperative care using colour, capillary refill, temperature, texture, and Doppler signal (if available). While these techniques are effective, they are prone to error due to their qualitative nature. In this research, different wavelengths of light were used to quantify the response of ischaemic tissue. The assessment provides indicators that are key to developing a point-of-care diagnostic device that is capable of observing reduced perfusion quantitatively. Detailed optical models of the layers of the skin were set up and appropriate optical properties assigned, with due consideration of melanin and haemoglobin concentration. A total of 24 models of healthy, perfused and perfusion-deprived tissue were used to assess the responses when illuminated with visible and near-infrared wavelengths of light. In addition to detailed fluence maps of photon propagation, a simple mathematical model is proposed to assess the differential propagation of photons in tissue; the optical reperfusion factor (ORF). The results show clear advantages of using light at longer wavelengths (red, near-infrared) and the inferences drawn from the simulations hold significant clinical relevance. The simulated scenarios and results consolidate the belief in a multi-wavelength, point-of-care diagnostic device, and inform its design to quantify blood flow in transplanted tissue. The modelling approach is applicable beyond the current research and can be used to investigate other medical conditions in the skin that can be mathematically represented. Through these, additional inferences and approaches to other point-of-care devices can be realised.

Keywords: Maxillofacial; Monte Carlo simulations; Optical diagnostics; Optical reperfusion factor; Postoperative care.

MeSH terms

  • Humans
  • Monte Carlo Method
  • Skin* / diagnostic imaging
  • Surgical Flaps*