Objective: The purpose of the study was to perform a post hoc analysis to explore the effect of baseline anatomic characteristics identified on OCT on best-corrected visual acuity (BCVA) responses to risuteganib from the completed phase II study in subjects with dry age-related macular degeneration (AMD).
Design: Post hoc analysis of a randomized, double-masked, placebo-controlled, phase II study.
Subjects: Eyes with intermediate dry AMD with BCVA between 20/40 and 20/200. Patients with concurrent vision-influencing or macula-obscuring ocular pathologies were excluded.
Methods: Patients were randomized to receive a 1-mg intravitreal risuteganib injection or a sham injection at baseline. A second 1-mg intravitreal injection of risuteganib was given at week 16 to those in the treatment arm. Two independent, masked reading centers evaluated the baseline anatomic characteristics on OCT to explore features associated with positive responses to risuteganib.
Main outcome measures: Treatment response was defined as a gain of ≥ 8 letters in BCVA from baseline to week 28 in the treatment arm, compared with baseline to week 12 in the sham group. Anatomic parameters, measured by retinal segmentation platforms, including measures of retinal thickness were compared between the responders and nonresponders to risuteganib.
Results: Thirty-nine patients completed the study and underwent analysis. In the treatment arm, 48% of eyes demonstrated treatment responses, compared with 7% in the sham group. In the quantitative anatomic assessment, enhanced ellipsoid integrity, greater outer retinal thickness, and decreased geographic atrophy were associated with increased BCVA gains to risuteganib.
Conclusions: This post hoc analysis demonstrated that baseline OCT features may help determine the likelihood of a functional response to risuteganib. The characterization of higher-order OCT features may provide important information regarding biomarkers for treatment response and could facilitate optimized clinical trial enrollment and enrichment.
Keywords: AMD; Dry AMD; Ellipsoid zone; Geographic atrophy; Image analysis; Machine learning; OCT; Risuteganib.
Copyright © 2022 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.