Ryanodine receptor 2 (RYR2) dysfunction activates the unfolded protein response and perturbs cardiomyocyte maturation

Cardiovasc Res. 2023 Mar 17;119(1):221-235. doi: 10.1093/cvr/cvac077.

Abstract

Aims: Calcium-handling capacity is a major gauge of cardiomyocyte maturity. Ryanodine receptor 2 (RYR2) is the pre-dominant calcium channel that releases calcium from the sarcoplasmic reticulum/endoplasmic reticulum (SR/ER) to activate cardiomyocyte contraction. Although RYR2 was previously implied as a key regulator of cardiomyocyte maturation, the mechanisms remain unclear. The aim of this study is to solve this problem.

Methods and results: We performed Cas9/AAV9-mediated somatic mutagenesis to knockout RYR2 specifically in cardiomyocytes in mice. We conducted a genetic mosaic analysis to dissect the cell-autonomous function of RYR2 during cardiomyocyte maturation. We found that RYR2 depletion triggered ultrastructural and transcriptomic defects relevant to cardiomyocyte maturation. These phenotypes were associated with the drastic activation of ER stress pathways. The ER stress alleviator tauroursodeoxycholic acid partially rescued the defects in RYR2-depleted cardiomyocytes. Overexpression of ATF4, a key ER stress transcription factor, recapitulated defects in RYR2-depleted cells. Integrative analysis of RNA-Seq and bioChIP-Seq data revealed that protein biosynthesis-related genes are the major direct downstream targets of ATF4.

Conclusion: RYR2-regulated ER homeostasis is essential for cardiomyocyte maturation. Severe ER stress perturbs cardiomyocyte maturation primarily through ATF4 activation. The major downstream effector genes of ATF4 are related to protein biosynthesis.

Keywords: Cardiomyocyte maturation; ER stress; Ryanodine receptor 2.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism
  • Calcium Signaling
  • Mice
  • Myocytes, Cardiac* / metabolism
  • Ryanodine Receptor Calcium Release Channel* / genetics
  • Ryanodine Receptor Calcium Release Channel* / metabolism
  • Sarcoplasmic Reticulum / metabolism
  • Unfolded Protein Response

Substances

  • Ryanodine Receptor Calcium Release Channel
  • Calcium