Metal nanoparticle arrays via a water-based lift-off scheme using a block copolymer template

Nanotechnology. 2022 May 17;33(32). doi: 10.1088/1361-6528/ac64b1.

Abstract

Metalnanoparticles(NPs) can exhibit unique electronic, magnetic, optical, and catalytic properties. Highly ordered, dense arrays of non-close-packed, surface-supported metal NPs are thus of potential use in a wide range of applications. Implementing such arrays over large surfaces can, however, be both technologically challenging and prohibitively expensive using conventional top-down nanofabrication techniques. Moreover, many existing patterning methods are too harsh for sensitive substrate surfaces and their applications. To address this, we here investigate a fabrication protocol involving a water-based lift-off scheme in which the template pattern generation is rapidly and inexpensively achieved throughblock copolymer(BCP) self-assembly. A three-layer lift-off stack consisting of, from top to bottom, a poly(styrene-block-2-vinyl pyridine) template, a SiOxintermediate hardmask, and a water-soluble poly(vinyl alcohol) sacrificial layer is employed in this endeavor.Solvent-induced surface reconstruction(SISR) is used to generate an initial surface topography in the BCP template which is subsequently transferred to the layers beneath in a sequence of reactive ion etching steps. Through judicious selection of stack materials and dry etch chemistries, a layered, high-aspect-ratio, nanoporous mask is thus implemented. After metal deposition, the mask and excess material are simply removed in a lift-off step by dissolving the bottommost sacrificial layer in water. The incorporation of an intermediate hardmask and a water-soluble sacrificial layer obviates the need for harmful and/or corrosive lift-off solvents and decouples the BCP self-assembly process from the influence of substrate properties. We demonstrate the generation of well-ordered arrays of Au NPs capable of supporting sharp, localized surface plasmon resonances. We also investigate improvements to large-scale uniformity, as this is found sensitive to the SISR termination step in the original protocol. Extensions of the technique to other BCP morphologies and materials deposited ought to be straightforward.

Keywords: block copolymer lithography; lift-off; nanoparticle arrays; nanoporous template; noble metal nanoparticles; self-assembly; water-soluble sacrificial layer.